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CHAPTER I 

THE PROBLEM AND ITS BACKGROUND 

 Statistical power, the probability of finding significant results for a given effect in 

a population, rises when sample size increases. The selection of the optimal sample size 

involves a balancing of concerns about statistical power and about budgeting and other 

resources. A common practice that balances these concerns is to find a sample size that 

ensures a power of .80 or .90. Several free and high quality programs for power 

calculation in simple designs are available (e.g., G*Power; Faul, Erdfelder, Lang, & 

Buchner, 2007). Moreover, free and high quality programs for more complex designs, 

such as the cluster randomized design, are also available. These programs, however, can 

be improved upon because each of them has different shortcomings and limitations. This 

study describes the parameters and theoretical underpinnings of such an attempt to make 

these improvements: a program called Power Analysis and Width of confidence interval 

for Sample sizes estimation (PAWS), for power calculation in the case of the cluster 

randomized design. 

 The cluster randomized design (CRD) is a design in which the unit of random 

assignment to different conditions is groups of objects, such as people participating in 

experiments about group psychotherapy, classrooms, schools, departments, or 

organizations. One of the complexities associated with the statistical analysis of data with 
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this structure is that there are two types of sample size: number of clusters (i.e., groups) 

and cluster size. Because different combinations of these two types of sample sizes may 

provide the same power, selecting a particular combination depends on the researcher’s 

goals, priorities, and budget. PAWS allows researchers to select a combination of the 

number of clusters and cluster size depending on whether the goal is to achieve a 

particular threshold of power while minimizing cost or to maximize power given a fixed 

budget. PAWS can find the optimal sample size for a specified width of the confidence 

interval (CI) of an effect size (ES) as well. 

 Because power analysis is a well-known procedure, I will not discuss it in detail. 

Instead, I will focus on providing the background knowledge necessary to understand 

issues related to the accuracy in parameter estimation, given by a width of confidence 

intervals of effect size (CI of ES). Next, I will explain the relationship between 

significance testing and CI of ES. After that, I will explain how to find the CI of Cohen’s 

d for the difference between independent means, which is the simplest case of CI of ES. 

Next, the similarities and differences in finding sample size based on power and desired 

accuracy in effect size estimation will be explained. The sample size based on both ways 

for comparing two independent means will be discussed. Finally, I will illustrate these 

principles using CRD.  

Rationale of Confidence Interval of Effect Size 

During the 1990’s, significance testing was challenged and criticized with 

increasing frequency by many researchers (Cohen, 1994; Nickerson, 2000). Wilkinson 

and the Task Force of Statistical Inference (1999) encouraged researchers to use ES and 

interval estimations of ES. One of the benefits of reporting the CI of ES is that not only 



 

 3 

does it provide all of the information provided by significance testing but also adds 

additional information that can be very useful to researchers. It is true that some research 

questions are concerned solely with the direction of the effect (Maxwell, Kelley, & 

Rausch, 2008). Many research questions also involve estimates of the magnitude of the 

effect. In these studies, the CI of ES offers considerable advantages over significance 

testing. 

Significance Testing and Confidence Intervals of Effect Sizes 

Significance testing answers the question of whether the effect really exists in a 

population. The CI of ES provides information on both the magnitude of the effect and 

also the precision of the effect size estimate. There are at least five advantages of using 

CI of ES over using traditional significance testing when analyzing data. 

First, the CI of ES gives more direct and more useful information about ES than 

does traditional significance testing. Although some researchers may use p-values to 

loosely infer ES (e.g., distinguishing between p-values of .05, .01, and .001 or declaring 

an effect “marginally significant,” “significant,” or “highly significant”), this practice can 

lead to erroneous conclusions. It is true that the smaller the p-value, the greater the 

distance from the boundary of CI of ES to the null hypothesis value. This relationship, 

however, is nonlinear. Furthermore, the p-value is determined by the sample size, such 

that a very small effect can have a very small p-value if the sample size is large. Thus, ES 

estimates and CI of ES provide much more direct and easily understood information 

about the magnitude of effects than do the p-value. 

Second, the CI of ES reveals the precision of the point estimation (Wilkinson et 

al., 1999). ES statistics are point estimates. Although researchers may obtain high values 
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of ES, the CI may be large and thus may fluctuate widely in replication studies. When a 

CI of ES is narrow, researchers can be confident that the point estimation of the ES is 

stable. In contrast, significance testing provides a significance value, which only helps 

the researcher decide if the effect size parameter is different from zero. 

Third, the CI of ES can be used for a surprising purpose: accepting the null 

hypothesis (Kelley & Rausch, 2006). As most statistics students have been warned 

repeatedly by their instructors, significance testing cannot be used for that purpose. Just 

because a researcher fails to reject the null hypothesis, it is not the case that the null 

hypothesis has been proven. In contrast, if the ES is very small and the CI of ES is very 

narrow, then one can argue that whatever the true size of the effect, it is of negligible 

importance.  

Fourth, the CI of ES is useful for integrating the results of many research studies, 

as is done in meta-analysis (Cumming & Finch, 2001). Researchers may use the CI of ES 

to aggregate results across studies and compare groups of studies. Thompson (2002) 

illustrated how to combine the CI of ES across studies to a single CI of ES. He showed 

that 11 nonsignificant studies can combine to a single CI of ES which did not include 

zero. Combining effect sizes across different studies makes the estimation of the ES more 

precise. The aggregation of the results makes the estimation of the ES have a narrower 

CI.  

Finally, the CI of ES can be used to test a broader set of hypotheses than is 

typically conducted with null hypothesis testing. A researcher might not be interested in 

whether an effect is larger than zero. Rather, the researcher might wish to know if one ES 

is significantly larger than some other ES. Suppose a standard treatment has an effect size 
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of 0.5. A new treatment may have an estimated effect size of 0.6. Without a CI of ES, it is 

difficult to make the case that the new treatment is superior to the standard treatment 

unless the treatments have been compared in a head-to-head clinical outcome trial. If the 

CI of ES is sufficiently small, a researcher can reasonably infer that the new treatment is 

better, even though the two treatments were never compared directly. 

Reporting Accuracy in Parameter Estimation 

Alhija and Levy (2009) estimate that only half of educational research studies 

reported ES statistics during 2003-2004. Even when ES statistics were reported, it was 

quite rare for the CI of ES statistics to accompany them. Ignorance of the existence of CI 

of ES is probably the main reason that researchers report them infrequently. However, 

Cohen (1994) suggested that one reason for the unpopularity of CI of ES was that the 

CI’s from most research studies were “embarrassing large,” which may reduce the 

likelihood of the studies being published (Maxwell et al., 2008). The widespread failure 

to report CI of ES is unfortunate because CI of ES potentially could provide researchers 

with important information and can help guide sample size selection (Kelley & Rausch, 

2006; Maxwell et al., 2008).  

Power and CI of ES in Two Independent Means Difference 

 One of the most important issues related to CI of ES has to do with setting the 

desired accuracy in parameter estimation, which is determined by the width of CI of ES. 

The smaller the CI of ES, the more precise the estimation of the parameter is. This 

concept can most easily be illustrated with the simplest experimental design: comparing 

two independent means.  
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 Many different procedures have been developed to estimate the CI of ES of the 

difference of two independent means. These options are based on different approaches: 

parametric or nonparametric, accurate or approximate, and different versions of Cohen’s 

d statistic, such as one which is based on means or trimmed means. When the 

assumptions of parametric statistics hold, the standard parametric statistics comparing 

independent means are the most efficient, which yields the narrowest standard error and a 

CI that is more likely to contain the true population parameter (Bonett, 2008; Keselman, 

Algina, Lix, Wilcox, & Deering, 2008). When parametric assumptions (e.g., the 

normality assumption or the homogeneity of variance assumption) are violated, however, 

other methods, such as the bootstrap CI (Efron & Tibshirani, 1994), produce CI that are 

more likely to contain the true population parameter.  

 Because the main purpose of this article is to estimate sample size, I will assume 

that the parametric assumptions of estimating power or CI of ES hold. When researchers 

are attempting to estimate how large a sample is needed for a particular study, they often 

do not know whether the variables they intend to measure are normally distributed. 

Likewise, researchers often do not know by how much the variance of the dependent 

variables will differ across groups. Therefore, I will rely on the standard assumptions of 

parametric tests and provide the sample size. The standard parametric statistics method 

for comparing two independent means is based on the standard independent t-test. The 

formula is 
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where     and     are group means of condition 1 and 2, respectively, n1 and n2 are sample 

size of group 1 and 2, and sp is pooled standard deviation from both groups. The standard 

error of this method is calculated by pooled standard deviation, which is the square root 

of the weighted mean of variance of two groups, assuming homogeneity of variance. The 

distribution of t statistics, when there is no mean difference in population, will be a 

central t distribution in which the degrees of freedom are given by n1 + n2 – 2. To 

estimate power, the distribution of the alternative hypothesis must be known. Most of the 

time, researchers do not know by how much the population means differ but estimate the 

difference using Cohen’s d (Cohen, 1988), which is computed in samples or populations 

by  

  
       

  

    
     

  

                                                               

where   is the parameter of Cohen’s d,    and    are group means of condition 1 and 2 in 

population and    are pooled standard deviation from both groups in population. Other 

symbols are defined in the Equation 1. 

The t formula can be written with the standardized mean difference d as 

  
 

 
 
  

 
 
  

                                                                           

If researchers specify the ES in advance, they must be aware that Cohen’s d 

depends on the sample means of both groups and the pooled standard deviation and that 

both the means and the pooled standard deviation are subject to sampling error. With the 

exception of the case in which the null hypothesis is true, the distribution of the t statistic 

is a noncentral t distribution instead of the central t distribution. The noncentral t  
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Figure 1. The noncentral t distribution is asymmetrical. The center of noncentral t 

distribution is called the noncentrality parameter (ncp). The larger the ncp, the more 

asymmetric the distribution is. The distribution that ncp = 0 is the central t distribution, 

which is symmetrical. 

 

 

distribution depends not only on the degrees of freedom (n1 + n2 – 2) but also on the 

magnitude of the effect size. As shown in Figure 1, the noncentral t distribution will be 

nonsymmetrical and wider than the central t distribution when the degrees of freedom are 

low and the magnitude of effect size is high. The exact center of the noncentral t 

distribution, called the noncentrality parameter (), is  
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which is equal to Cohen’s d ES in the independent-samples t-test. The statistical power of 

the independent-samples t-test is determined from the proportion of the noncentral t 

distribution that is greater than the critical value of the central t distribution when testing 

the null hypothesis.  

To develop the idea of a CI of ES for the independent t-test, I will show how to 

build the CI of raw score means differences, which may be developed in two different 

ways (Cumming & Finch, 2001). The first method is to solve for the CI using the t 

statistic formula. Then, the formula for the CI for raw score means difference will be  

                                   
 

  

 
 

  
                                      

where  is significance level,                is confidence interval of raw score mean 

difference with confidence level of 1- ,       is critical t value which the degrees of 

freedom of df and 2-tailed significance level of . 

This method assumes that the distributions of t statistics for raw score differences 

are identical for the upper and lower bounds of the CI. The sampling distribution in the 

lower and upper bounds are identical because both statistics have a central t distribution. 

The reason they both have a central t distribution instead of a noncentral t distribution is 

that the null hypothesis is not specified in the CI of raw score mean differences. 

Therefore, the CI shows raw score difference parameters, null hypotheses values, which 

can draw the obtained raw score mean difference.  
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Another method will start with the mean difference parameter,      . Next, two 

sampling distributions of         are drawn on the left and right hand side of obtained 

       , which is the point estimate of      . Then, the distribution of         on the 

left side is moved until the critical value on the right side equals obtained        , as 

well as moving the distribution on right side until the critical value on the left side 

reaches obtained        . The lower and upper bound of the CI is the center of the 

distribution of left and right sides. The whole process is shown in the top panel of Figure 

2. This method can be used when the upper and lower bounds of the CI have either 

identical or different sampling distributions. 

 The CI of ES is related to the distribution of standardized mean differences, which 

have noncentral t distributions. Because the shape of the noncentral t distribution depends 

on the effect size (noncentrality parameter), the distance between the obtained ES and the 

lower bound is different from one between the obtained ES and the upper bound. The 

reason that the distribution of the ES has a noncentral t distribution is that the null 

hypothesis value must be specified for constructing ES, which is 0. It can be shown in 

formula as 

  
                             

  

                                                 

where all symbols are defined in Equation 2. CI of ES shows the Cohen’s d value in the 

alternative hypotheses which are likely to draw the obtained Cohen’s d. The alternative 

hypotheses are distributed as noncentral t. Therefore, the second method is appropriate 

for constructing CI of ES. To develop the CI of a Cohen’s d, two noncentral t 

distributions are drawn on the left and right hand side of the obtained t, which is  
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Figure 2. Two central t distributions are drawn on the left and right hand sides of the 

observed t. The critical values on the right (i.e., 97.5
th

 percentile) and the left (i.e., 2.5
th

 

percentile) of the left and right distributions, respectively, are equal to the observed t. The 

lower and upper bounds of the CI of raw score means difference can be derived from the 

left and right distribution by t formula in the Equation 1.  

 

 

transformed from the obtained Cohen’s d. The noncentral t distribution on the left side is 

moved until the critical value on the right side (i.e., 97.5
th

 percentile for 95% CI) equals 

the obtained t, as well as moving the noncentral t distribution on the right hand side until 

the critical value on the left side (i.e., 2.5
th

 percentile for 95% CI) reaches the obtained t. 

The lower and upper bound of CI of ES is the center or noncentrality parameters of the 

noncentral t distribution on the left and right sides. The whole process is shown in the  
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Figure 3. Two noncentral t distributions are drawn on the left and right hand sides of the 

observed t. The 97.5
th

 and 2.5
th

 percentiles of the left and right distributions, respectively, 

are equal to the observed t. The noncentrality parameters of the lower and upper 

distributions are transformed to the standardized means differences by the Equation 3. 

 

 

Figure 3. If researchers change the null hypothesis value of raw score means difference, 

the ES statistic also changes and the CI of ES changes. The noncentral t distributions on 

the left and right sides change as well; therefore, the width of CI of ES changes. 

 The proportion of the area under the noncentral t distribution is often not 

substantially different from the analogous area under a normal curve, especially when the 

sample size is large and the ES is small. Although some researchers insist on using the 

more accurate noncentral t distribution (Cumming & Finch, 2001; Kelley & Rausch, 
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2006), others maintain that because estimates using the normal distribution are typically 

sufficiently close to estimates using the noncentral t distribution, the distinction is 

unimportant (Bonett, 2008, 2009). Bonett (2008) argued that, because computation of CI 

of ES is based on large sample sizes to make the CI as narrow as possible, the large 

sample approximation (i.e., using the normal curve) is sensible. Indeed, the noncentral t 

distribution rapidly converges to the normal distribution, as shown below in the sample 

size estimation of independent mean differences. To achieve the power of .80 in the 

medium ES, the choice between the noncentral t distribution and the normal distribution 

results in a negligible difference. Also, because researchers are not satisfied until the 

accuracy of estimation in the CI of ES is narrow (e.g., width of 0.5), the sample size 

required is quite large, as shown below. Thus, the distinction between the noncentral t 

distribution and the normal distribution is unimportant in this domain as well. In addition, 

a small difference in sample size estimation is not usually important because researchers 

typically plan to collect more data than the exact minimum sample size suggested by 

power analysis. Thus, although using the noncentral t distribution may result in a sample 

size recommendation that is slightly different from the sample size recommendation 

produced by procedures using the normal distribution, the actual difference in power or 

CI of ES that would result from using an “incorrect” sample size is usually negligible. In 

studies with a small sample size, however, researchers who would like to analyze CI of 

ES should use the noncentral t distribution, even though the CI is wide. 

Sample Size Estimation for Two Independent Means 

 Sample size estimations for the purpose of ensuring adequate power often have 

different outcomes compared to sample size estimations for accuracy in parameter 
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estimation. When selecting a sample size that will ensure adequate power, researchers 

hope that they will obtain a statistically significant result. The purpose of sample size 

estimation for accuracy in parameter estimation, however, is to make sure that a sample 

statistic is a good estimate of a parameter. For example, researchers might wish to know 

how large the sample size must be to make sure that the Cohen’s d effect size has a 

margin of error no larger than ±0.2. The different methods can require quite different 

sample sizes. I will demonstrate the sample size estimation process using the two 

independent means research design. 

 As shown above, to estimate power, researchers should know the noncentral t 

distribution of the ES statistic, the level of power they wish to have, and the critical value 

of the null hypothesis test. The procedure is an iterative process in which the sample size 

is increased until the probability of the area under the noncentral distribution above the 

critical value is equal to the specified power. Dalgaard (2008) provided the formula for 

estimating power when sample sizes in each group are equal as 

     
             

 
 

 

                                                             

where    represents quantiles in the normal distribution, n is estimated sample size, and  

is the estimated parameter value of Cohen’s d. This formula uses the normal distribution 

to approximate the noncentral t distribution. The estimated sample size is reasonably 

accurate when the df are over 20. 

 In finding a sample size for accuracy in parameter estimation, the process is 

similar to that of power analysis. Kelley and Rausch (2006) suggested that, as a first step, 

a researcher specifies a desired width of the CI of ES, the confidence level, and the 
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estimated population ES. These three numbers are used to estimate the starting value of 

the sample size (  ) by 

             
        

 
 

 

                                                               

where   is a specified width of the CI of Cohen’s d and ceiling[x] is the next largest 

integer function; in other words, the value is rounded up to an integer value rather than 

rounding to the closet integer. Notice that the starting value is estimated using the normal 

distribution. From there, the starting value is used for building the CI of Cohen’s d by the 

procedure shown above. Two noncentral t distributions are drawn on the left and right 

hand side of the obtained t, which is transformed from the obtained Cohen’s d. The 

noncentral t distribution on the left side is moved until the critical value on the right side 

(i.e., 97.5
th

 percentile for 95% CI) equals the obtained t, as well as moving the noncentral 

t distribution on the right hand side until the critical value on the left side (i.e., 2.5
th

 

percentile for 95% CI) reaches the obtained t. The width of CI of Cohen’s d is the 

distance between the lower and upper bounds. Next, as an iterative process, the sample 

size increases until the width of the CI of ES is equal to the desired width. 

 This width, however, is a population parameter, and as such, it is subject to 

sampling error such that the obtained width in real data will deviate (positively or 

negatively) from the specified width. Therefore, the obtained sample size does not 

guarantee that the obtained width of CI is equal to the desired width. It might be said that 

the probability of getting samples for which the width of CI is less than or equal to the 

desired width is approximately 50%. Thus, researchers might want to increase their 

sample size somewhat to reduce the probability of getting CI width larger than desired. 
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The probability that obtained samples have a CI of ES width less than or equal to the 

desired width is known as degree of certainty (Kelley, 2008; Kelley & Rausch, 2006).  

Kelley and Rausch (2006) dealt with degree of certainty in finding sample sizes 

for accuracy in parameter estimation in two independent means by adjusting the ES 

parameter. They note that the farther the ES is from 0, the larger the width of the CI. If 

researchers use the ES (a.k.a. adjusted ES) that deviates from 0 more than the original ES 

to find the sample size, it will guarantee that the obtained sample size from the adjusted 

ES will produce the smaller width for the original ES. Therefore, the degree of certainty 

increases. In other words, the probability that the width from original ES is less than or 

equal to desired ES increases. The method to find the adjusted ES is shown in Kelley and 

Rausch (2006).  

 On the other hand, Bonett (2009) provided a simpler formula for estimating 

sample size for accuracy in parameter estimation for any linear contrasts to compare 

group means. The formula for two independent means difference is 

         
        

 
 

 

                                                                

 Bonett (2009) used a two-step approach to account for degree of certainty ( ). 

First, he provided an equation to find adjusted ES (  ) by using the required sample size 

(n) from the Equation 9 using the original ES. The equation is 

        
  

      
 

 

   
                                                         

Next, the adjusted ES is used to find sample size again by Equation 9. Bonett (2009) said 

that the sample size estimation by this formula reproduced the sample size in Kelley and 
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Rausch (2006) table by a difference of 1. These formulas in Bonett (2009)  are based on 

CI of ES formulas provided in Bonett (2008), which did not assume homogeneity of 

variance. 

 The results of power analysis and accuracy in parameter estimation are different 

because they are used for different purposes. According to Kelley and Rausch (2006), the 

sample size calculated for a given power is highly related to ES. If researchers wish to 

obtain a statistically significant difference from a small ES, they must have a large 

sample. For example, if researchers wish to have a power of .80 when the Cohen’s d is 

0.2, the estimated sample size is 788. The estimated sample size, however, is only 128 

when the Cohen’s d is 0.5. The ES and width of CI of ES relationship, however, is very 

small, so it may be considered a negligible relationship. On the other hand, the sample 

size calculated by accuracy in parameter estimation is highly related to the specified 

width. For example, if researchers wish to have the width of 95% CI of ES of 0.2 at the 

Cohen’s d of 0.2 with the degree of certainty of .80, the estimated sample size is 774. The 

estimated sample size is 125, however, when the desired width is 0.5. The higher the 

required accuracy of the CI of ES, the larger the required sample size.  

Extension to two-group CRD 

 The concept of accuracy can be applied to CRD as well. The formula from the 

independent t-test, however, cannot be used directly because the model must be account 

for both the number of clusters and cluster size. Even more complex, different numbers 

of clusters, cluster size, and proportion of treatment clusters can provide the same power 

and the same width of CI of ES. Therefore, researchers should pick a combination 

appropriate for their study, such as the lowest cost combination.  
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CRD has less power than the independent t-test when the total numbers of 

participants are equal (Hedges, 2007a); therefore, researchers should plan their studies 

carefully. Sometimes, increasing sample size is impossible. Researchers may find 

covariates to improve the precision of parameter estimates, which increases power and 

reduces the width of CI of ES (Raudenbush, Martinez, & Spybrook, 2007). I will show 

some studies that develop ways to estimate power in CRD and expand these ideas in 

some aspects. 

Two-group CRD Model 

 The two-group CRD deals with a nested data structure. For the sake of clarity, I 

will refer to the higher level and lower level of the hierarchical data structure as the 

cluster level and the individual level, respectively. This two-group CRD model, however, 

can be applied to other situations, such as individual-measurements and school-

classrooms. The treatment variable is applied in the higher level or cluster level, such as 

school-based intervention for school-individuals data structure. Treatment group 

membership may be either randomly assigned to clusters (e.g., two types of 

interventions) or not (e.g., nominal cluster characteristics such as the distinction between 

public and private schools).  

 In simple research designs, error typically refers to individual error (e). That is, 

error is the discrepancy between treatment condition means and individual data. In CRD, 

however, error is divided into two levels: cluster error (u) and individual error (e). Cluster 

error is the degree to which the cluster mean is not predicted by treatment condition. It 

can be conceptualized as the aggregated effect of the common experiences of all 

individuals within each cluster. For example, students in each classroom have similar 
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experiences: They have the same teacher and experience the same social climate in the 

class. When all students in a classroom have a good teacher, the cluster error in this class 

will be higher than the cluster error in other classrooms. In CRD, individual error 

represents the sum total of all unique effects that are uncorrelated with cluster error and 

the effects of the treatment variable. Examples of such effects might include individual 

difference variables such as cognitive abilities or personality. Therefore, each individual 

score can be divided into four components: 

                                                                                 

which means that the score of individual i from cluster j (   ) is the sum of the intercept 

(  ), the treatment condition effect (  ), the group error (  ) associated with membership 

in cluster j, and the individual error (   ) associated with individual i in cluster j. The 

intercept and treatment condition effect are interpreted differently, depending on how the 

treatment variable is coded. For usefulness in defining ES, I employed a two-group CRD 

using dummy coding for the treatment variable: 1 for the treatment condition and 0 for 

the control condition. The treatment condition effect (  ) is the difference between the 

treatment condition and control condition means. The intercept (  ) is the control 

condition clusters mean. As shown in the Appendix, the variance of the difference 

between treatment and control condition means estimate is 

         
  

     

        
                                                                    

where k is number of clusters, n is the cluster size, p is the proportion of treatment 

condition clusters,    is the cluster error variance or the variance of cluster-level error 

term (  ) and   
  is the variance of individual-level error term (   ). 
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Cluster error variance and individual error variance (  
 ) are not necessarily the 

same or even of the same magnitude. For example, it is possible that in a particular 

dataset the differences in student socioeconomic status is substantial across schools, but 

the differences among students within each school is trivial. In other words, cluster error 

variance in socioeconomic status can be greater than individual error variance. Of course, 

it is possible for individual error variance to be much larger than cluster error variance. 

The total error variance is the sum of cluster and individual error variances. The 

intraclass correlation (  ) is the proportion of cluster error variance to total error 

variance. The greater the intraclass correlation, the more the similarity there is within 

clusters. The intraclass correlation can be defined as 

   
  

     
                                                                             

The intraclass correlation is typically inversely related to the variance of the 

treatment condition difference estimate.  

Two-group CRD Model with a Covariate 

 When a covariate is introduced for explaining individual scores, it is hoped that 

error variances are reduced. Cluster and individual error variance reduce in different 

degrees, however, based on how much a covariate explains error variances at each level: 

between-cluster and within-cluster effects. For example, socioeconomic status can 

explain academic achievement in both the cluster and the individual level. The within-

cluster effect is the degree to which socioeconomic status explain the variability of 

academic achievement within schools. The between-cluster effect, however, is the degree 

to which socioeconomic status differences across schools explains the variability of 
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academic achievement differences across schools. Therefore, a covariate score can be 

divided into two portions: difference between- and within-group, 

      
         

                                                                      

where     is the covariate score of individual i from cluster j and  is the average covariate 

score across individuals in cluster j. Including a covariate effect in the Equation 11, each 

dependent variable score can be divided as, 

                
           

                                                  

where    is the group-level effect toward the dependent variable on the covariate,    is 

the individual-level effect toward the dependent variable on the covariate,    is the 

cluster-level error that accounts for the part of the score that cannot be explained by 

treatment variable and cluster-level covariate, and     is the individual-level error that 

cannot be explained by the individual-level covariate. Other terms are defined in 

Equations 11 and 14. This method of putting a covariate in the equation is also known as 

group-mean centering (Enders & Tofighi, 2007). The grand mean centering or no 

centering can be used, but the model specification to find power analysis is harder than 

group-mean centering. Therefore, I discuss only group-mean centering which divides the 

overall effect of a covariate into between- and within-group effects. Given the full range 

of options afforded by multilevel modeling, the individual-level covariate regression 

coefficient (  ) does not have to be equal across clusters. In this study, however, I will 

focus only on a covariate that has constant effects across groups.  

 Also, both error terms are varied but to a lesser degree compared to the model 

without a covariate. Let        and       
  be the cluster- and individual-level error variance 



 

 22 

after partialing out the effect of covariate Z. Then, the proportions of error variances 

explained by covariate Z (Byrk & Raudenbush, 2002) are 

  
  

         

  

                                                                       

  
  

  
        

 

  
                                                                        

where   
  is the proportion of variance explained at the cluster level and   

  is the 

proportion of variance explained at the individual level. As mentioned above,   
  and   

  

are not necessarily equal.  

 In addition, the overall variance of a covariate can be divided into two levels: 

cluster-level (  ) and individual-level (  
 ). The intraclass correlation of the covariate 

(  ) is 

   
  

     
                                                                            

As shown in the Appendix, the link between indices of proportions of variance 

explained and the covariate’s regression coefficient are 

  
    

 
  

  

                                                                            

  
    

 
  

 

  
                                                                             

and the variance of the difference between treatment and control condition means 

estimate is 
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 A covariate, however, cannot only be an individual property but also a property of 

clusters, such as teaching performance in a classroom-students data structure. In this case, 

a covariate will have only cluster-level effect and only explain variance at the cluster 

level.  

Effect Sizes in CRD Model  

 As shown above, Cohen’s d or the standardized mean difference is the most 

popular ES statistics when the experimental design involves the comparison of two 

means. Cohen’s d, however, cannot be used directly in the CRD context because there are 

many kinds of standard deviations: overall, cluster-level, and individual-level standard 

deviations (Hedges, 2007b). As the benefit of ES is to compare with other studies, these 

standard deviations are appropriate in different situations. When the lower level of CRD 

is the individual level and other studies are usually a single-site study, the individual-

level standard deviation is appropriate. When the higher level of CRD is individual level, 

such as comparing individuals who have one or many GRE scores, the group-level 

standard deviation is appropriate. When most of the other studies in the area are large 

surveys that report the overall standard deviation and ignore the fact that people are 

nested in natural groups, however, the overall standard deviation is appropriate. As CRD 

is most often used when the lower level is the individual level, I will focus on only 

Cohen’s d, which uses the individual-level ES. These individual-level ES (  ) can be 

written as 
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where    is the regression coefficient when the grouping variable was coded as dummy 

variable (0 or 1) in Equations 11 and 15 and where    is the individual-level standard 

deviation. 

Confidence Intervals of Effect Sizes 

 The approach for computing CI of ES by comparing two sample means cannot be 

easily generalized to the CRD model. In the independent samples t-test, the noncentrality 

parameter directly links with ES. In the two-group CRD model, however, the 

noncentrality parameter is a function of ES and intraclass correlation. Hedges (2007b) 

showed that the noncentral parameter in this distribution is 

      
     

     

 
    

         

                                                       

where    is the number of treatment groups,    is the number of control groups, n is 

number of individuals in each group, assuming that n is equal in both treatment and 

control conditions,    is intraclass correlation of the dependent variable, and    is 

parameter ES using the individual-level standard deviation. There are n – k degrees of 

freedom for the noncentrality distribution. Because the intraclass correlation is also a 

random variable (i.e., the intraclass correlation for different samples of clusters 

fluctuates), the CI of ES cannot be transformed from the lower and upper bounds of the 

noncentrality parameter. 

Fortunately, there are at least two options available for computing CI of ES. I will 

show only the CI of ES using individual-level standard deviation. First, Hedges (2007b) 

showed that the variance of this ES in CRD is 
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where    is the ES statistic using the individual-level standard deviation. Even though 

this ES has a noncentral t distribution, it can be assumed to be approximately normally 

distributed (Hedges, 2007b). The formula of the standard error of dW when the numbers 

of individuals in each group are not equal was also provided by Hedges (2007b). 

 Another method of computing CI of ES takes advantage of features found in 

many structural equation modeling packages (Cheung, 2009). This method can analyze 

the CI of any statistic that can be expressed by formulas. In most packages, a latent 

variable, called the phantom variable, is specified to have zero variance. An arbitrarily 

chosen observed variable is specified to regress onto the phantom variable. Next, the 

regression coefficient of the phantom variable represents the statistic needed by linear or 

nonlinear constraints from other parameters in the model. After analysis, the standard 

error of the regression coefficient is obtained and can be used to construct the CI by 

normal approximation. Therefore, to construct CI of ES in CRD, the regression 

coefficient can be constrained as the regression coefficient from treatment variable to 

dependent variable divided by the appropriate standard deviation of the dependent 

variable. Cheung (2009) also showed that likelihood-based CI’s have advantages over 

Wald-CI’s. Unfortunately, programs that compute likelihood-based CI’s, such as Mx, do 

not support convenient methods of conducting multilevel modeling. Therefore, I will use 

the  Wald CI by Mplus (Muthen & Muthen, 2007) to analyze the Wald CI of ES in 

multilevel analysis. 
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Sample Size Estimation by Power and Accuracy in Parameter Estimation in  

Two-Group CRD 

 As described above, in CRD, the sample sizes involved are cluster size and 

number of clusters. Therefore, different combinations of cluster size and number of 

clusters provide equal power or width of CI of ES. Therefore, researchers can pick many 

combinations. Most of the time, the combination of cluster size and number of clusters 

that result in the least cost is the preferred condition. To begin with, I will illustrate the 

cost function. Then, I will show how to find the optimal combination of sample sizes 

based on power and width of CI of ES. 

Cost Function 

When the sample size variables are only number of clusters and cluster size, the 

cost function can be expressed as 

                                                                                  

where k is number of clusters, and n is cluster size. Sometimes, the costs in treatment and 

control conditions are different. Therefore, the numbers of treatment and control clusters 

are not necessary to be equal. Therefore, the total cost changes as the sum of total 

treatment condition cost and control condition cost, which is 

                                                                                   

where total treatment (  ) and total control cost (  ) are 

                                                                                

                                                                                  

In this case, when the costs of treatment and control conditions are different, the optimal 

cost from different combinations providing equal power or width is one which collects 
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more data from the less expensive condition. Large discrepancies between the numbers of 

clusters from each condition, however, require more stringent adherence to assumptions. 

 Sometimes, researchers may try to reduce the number of total individuals 

collected, instead of the cost. However, the number of total individuals collected is a 

special case of cost function when cluster costs are 0 and individual costs are 1. 

Power Analysis 

 CRD power analysis is an extension of the independent t-test and ANOVA, which 

have different measures of ES. I will focus on the two-condition comparison only. The 

multiple condition comparison power analysis is shown in Barcikowski (1981).  

 As shown in the standard error equation above, the null hypothesis distribution is 

a central t distribution where 

  
   

         
                                                                         

with n – k degrees of freedom, where is     the raw score mean difference. When the ES 

with the individual-level standard deviation is specified, the alternative hypothesis is 

distributed as a noncentral t distribution, as shown above.  

Assuming that the individual level standard deviation is 1, the raw score mean 

difference (   ) is equal to the ES estimate (  ). Also, assuming that both null and 

alternative hypothesis distributions are normal, as shown in the Appendix, the variance of 

ES which provides a given power is 
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where dW is ES estimate using individual-level standard deviation, and     represents 

quantiles in the normal distribution. Researchers can estimate the combination of cluster 

size, number of treatment clusters, and number of control clusters by solving 

                
      

         

        
                                                        

which is created by constraining Equation 30 and either Equation 12 or 21to be equal. 

Notice that an increase in the number of clusters decreases the variance of ES. The 

variance can approach zero. The cluster size, however, has a subtle relationship with the 

variance. The variance can be reduced by increasing cluster size to a certain degree, but 

its limit is not 0 (Rotondi & Donner, 2009). 

 The optimal cost combination of sample sizes may be found mathematically. 

Raudenbush (1997) showed that, when the number of treatment and control groups are 

equal, the optimal cluster size for the CRD model without a covariate is 

           
  

 

  

  
            

               
                                                     

where    and   
  are cluster- and individual-level error variances, respectively. In a 

covariate CRD model, however, the optimal cluster size depends on the intraclass 

correlation of the dependent variable and the covariate, as well as the covariate effects on 

both levels (see Raudenbush, 1997, for a detailed discussion of the optimal cluster size 

for CRD with different kinds of covariates.).  

 Liu (2003) provided the optimal ratio of treatment and control conditions when 

the cluster-level costs of both conditions are not equal, assuming that the individual level 

of both conditions is equal. The optimal ratio is 
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where p is the proportion of treatment clusters.  

 In addition to the standard parametric approach, the empirical Bayes approach 

(Rotondi & Donner, 2009) and a priori Monte Carlo simulation is also available for 

power analysis in CRD (Muthen & Muthen, 2002). Both approaches are based on 

specifying parameter values in the population (e.g., intraclass correlation or raw score 

mean difference) and making hypothetical sampling distributions. The empirical Bayes 

approach can specify the intraclass correlation as a range of values. The empirical Bayes 

approach, however, is not directly linked to the individual-level ES. The advantage of the 

empirical Bayes approach is not essential in sample size estimation because researchers 

can set multiple intraclass correlations while searching for optimal values of sample 

sizes. Thus, I will explain only the priori Monte Carlo simulation, which is used in my 

program. 

 A priori Monte Carlo simulations build large numbers of samples from specified 

parameters. Next, the samples are used to calculate the desired statistics. Then, the easiest 

way to find a specified power is to check how many samples are statistically significantly 

different from the null hypothesis value. In this process, a large number of samples are 

required. Muthen and Muthen (2002) used 10,000 hypothetical samples for their 

analyses. 

 Many programs are available to calculate power in the two-group CRD, such as 

Optimal Design (Spybrook, Raudenbush, Congdon, & Martinez, 2009), PINT (Snijders 

& Bosker, 1993), ML-DE (Cools, Van den Noortgate, & Onghena, 2008), PASS (Hintze, 
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2008), R (Rotondi & Donner, 2009), or Mplus (Muthen & Muthen, 2002). Optimal 

Design, PINT, PASS and ML-DE are programs designed for finding sample size, but R 

and Mplus are generic packages that require researchers to write their own code, which 

can involve a steep learning curve. A disadvantage of PINT, PASS and ML-DE is that 

they require the researcher to specify raw score differences instead of standardized mean 

differences. Optimal design is the only program that accounts for standardized mean 

differences. However, it uses the total standard deviation, instead of the individual-level 

standard deviation. PASS can analyze the power of all regression coefficients for 

multilevel models; the cluster size, however, must be specified in advance, and PASS 

cannot find the optimal sample sizes by the cost function. PINT can analyze power of all 

regression coefficients also. Researchers need to specify a range of sample sizes, and 

PINT will calculate standard error for all combinations of the specified sample size range. 

PINT uses the cost function, as shown in Equation 25, to estimate an optimal cluster size 

given the number of clusters and a limited budget. PINT, however, cannot separate 

treatment and control condition costs. ML-DE also uses the cost function but, like PINT, 

cannot separate treatment and control condition costs. Furthermore, ML-DE requires a 

calculation process with several complicated steps involving multiple programs. Thus, 

PAWS that accompanies this thesis is designed to address the shortcomings of the 

currently available programs. PAWS finds a combination of sample sizes that has the 

largest power when researchers have a limited budget. In addition, PAWS is designed to 

be user-friendly and free. 
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Accuracy in Parameter Estimation 

 Researchers may need to know the minimum sample size to ensure that the ES is 

accurate enough. ES accuracy is measured by the width of CI of ES. As shown above, 

there are two strategies to analyze the CI of ES in two-group CRD. The analytical 

approach by Hedges (2007b) cannot be used directly in the models with covariates. 

Therefore, the phantom variable approach is preferred. To use the structural equation 

modeling package, however, the parameters from the model, such as ES, covariate effect, 

or intraclass correlation, cannot be put in the model directly. Fortunately, the parameters 

may be used indirectly by simulating Monte Carlo samples. Kelley (2008) used this 

approach to find the accuracy in parameter estimation of the coefficient of determination 

in multiple regression analysis. This approach is similar to the power analysis approach 

proposed by Muthen and Muthen (2002). First, the specified parameters are used to 

construct simulated samples. Next, the CI of ES is analyzed from all simulated samples. 

Then, the results of the width of CI of ES from all samples are used to find the average 

width. The degree of certainty (e.g., 80% of samples have the width of CI of ES less than 

.50) can be estimated by finding the percentile from the width of CI of ES data from all 

samples.  

 Before using the a priori Monte Carlo simulation approach, however, the sample 

sizes are required to make the samples. Therefore, the initial values of sample sizes are 

required. I will use the normal distribution approximation to find the initial values of 

sample sizes. As shown in the Appendix, the desired variance for a given width of the CI 

of ES is 
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The series of combinations of sample sizes that provide the same optimal variance can be 

solved. Then, we can find the optimal cost combination and use it in a priori Monte Carlo 

simulation. A priori Monte Carlo simulation is used to adjust the combination of sample 

sizes to provide the more accurate results. 
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CHAPTER II 

PROGRAM DESIGN 

 The main purpose of PAWS is to estimate the optimal sample sizes required in the 

two-group CRD using three criteria: the least number of individuals, the optimal cost 

given power (or width of CI of ES), and the maximum power (or the least width of CI of 

ES) from a fixed budget. Although PAWS can introduce a covariate in the model, one 

must assume that the covariate and the treatment variable are not correlated. In other 

words, there is no difference in the covariate means in two treatment conditions. Two 

types of covariates are available: individual-level and cluster-level covariates. In addition, 

researchers can estimate the sample sizes in which the numbers of treatment and control 

clusters are not equal. This feature is appropriate when the treatment and control 

conditions’ costs are not equal, which compensates with loss of robustness when the 

parametric assumptions are violated. PAWS also allows researchers to fix some 

characteristics of sample sizes in advance: number of clusters, cluster size, or proportion 

of treatment groups. For example, researchers may know in advance that the classroom 

size is approximately 25. Therefore, researchers would like to find the number of clusters 

and proportion of treatment clusters only, given the costs of data collection. PAWS may 

be used to analyze the post hoc analysis, find power or CI of ES, given sample sizes, ES, 

and intraclass correlation.  
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 The general approach of PAWS uses the normal approximation as initial 

estimates and a priori Monte Carlo simulation to provide more accurate results. When 

researchers would like to find the combination that provides the least expensive or the 

least number of individuals given power or width of CI of ES, several steps are involved. 

First, PAWS uses normal approximation to find many combinations of sample sizes that 

provides a given power or CI of ES. Then, PAWS picks a sample size combination that 

provides the least number of individuals or the least cost. Next, all parameters are used to 

make simulated samples (e.g., 10,000 samples) in different sample size combinations. 

PAWS makes a band of sample size combinations around the initial estimates of sample 

sizes. After the simulated samples of all sample size combinations around the initial 

estimates are built, PAWS checks whether the initial estimates provide accurate power or 

CI of ES with the least number of individuals or the least cost. If yes, PAWS will return 

the result. If not, it will adjust the band of sample sizes and reanalyze again until PAWS 

has found the sample sizes combination that provides accurate power or CI of ES with 

the least cost or the least numbers of individuals. In the fixed budget criterion, PAWS 

will find the various combinations of sample sizes and searches for the least variance of 

ES (maximum power and least CI of ES). Then, a priori Monte Carlo simulation is used 

to give more accurate results.  

 PAWS is designed to be user-friendly. PAWS is written for PC using Visual 

Basic 2008 Express. A priori Monte Carlo simulation samples are made by Mplus 

(Muthen & Muthen, 2007) with multilevel add-on (or combination add-on). Therefore, 

PAWS requires Mplus to estimate sample sizes by a priori Monte Carlo Simulation. 

Even without the Mplus multilevel add-on, PAWS still provides researchers with the 
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initial estimates of sample sizes. The degree of certainty, however, cannot be given 

because it requires the distribution of widths of CI of ES from simulated samples.  
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CHAPTER III 

PROGRAM VALIDATION 

 I used PAWS to replicate the results obtained from PINT 2.2 that accompanies the 

Snijders and Bosker (1993) article. PINT is preferred because it can be used to estimate 

standard errors in most two-level models. It requires many steps, however, to obtain the 

standard error for CRD, such as calculating the variance of the treatment variable, the 

variance of the covariate in both levels, the mean of the treatment variable, and the error 

variance of the dependent variable in both levels. Some of the other programs are 

designed for only special cases, such as Optimal Design or ML-DE, or R code provided 

by Rotondi and Donner (2009).  

I validated PAWS based on 300 situations from combinations of five variables. 

1.  I used five methods to find the sample sizes: (a) to achieve power of .80 and 

minimize budgets, (b) to achieve the width of 0.2 and minimize budgets, (c) to achieve 

the width of 0.5 and minimize budgets, (d) to maximize power given $500 budget, and 

(e) to maximize power given $1,000 budget. I used a power of 0.8 based on Cohen’s 

(1988) guideline. I assumed that researchers would not like the width of CI greater than 

0.5. I also assumed that, for pragmatic reasons, researchers would not like to have a CI of 

ES that is too narrow. Thus, I considered only CI of ES’s with widths of 0.2 and 0.5. In 
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the simulations, the budget was arbitrarily set to $500 or $1000 so that when the 

individual cost is $1, the budget would be sufficient for 500 or 1000 individuals.  

2.  I specified the intraclass correlation of the dependent variable as either 0.05 or 

0.25. These numbers are inspired by the findings in Hedges and Hedberg (2007) that 

academic achievement had the intraclass correlation of 0.25 within classrooms and that 

many other psychological constructs have an intraclass correlation of 0.05 within 

classrooms.  

3.  I specified the effect size of the treatment variable on the dependent variable to 

be either 0.2 or 0.5, which corresponds to Cohen’s (1988) labels of small and medium 

effect sizes, respectively. Note that all effect sizes are based on individual-level standard 

deviations.  

4.  I specified three group costs: None, $5, and $10. The choices of $5 and $10 are 

to specify that the group costs are five and ten times that of the individual cost, which 

specified as $1.  

5.  I used five covariate characteristics: (a) no covariate, (b) an individual-level 

covariate explaining 13 percent of individual error variance, (c) a covariate with 

intraclass correlation of 0.5 explaining 13 percent of both cluster and individual error 

variance, (d) a covariate with intraclass correlation of 0.25 explaining 13 percent of both 

cluster and individual error variance, and (e) a cluster-level covariate explaining 13 

percent of cluster error variance. The value of 13 percent was chosen to correspond to a 

medium effect size of  f 
2
 = .15 in a multiple regression model (Cohen, 1992).  

Given the five variables described above, there are 5 × 2 × 2 × 3 × 5 = 300 

combinations that were evaluated. I validated PAWS by finding the sample sizes given 
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each situation. PAWS provided the power, width of 95% CI of ES, and width of 99% CI 

of ES. Next, I used PINT to estimate the standard error of the treatment effect. The 

standard error will be used to calculate the power and width of CI of ES using the 

Equation 30 and 34, respectively. I also used PAWS to find the power, width of 95% CI 

of ES, and width of 99% CI of ES, based on normal approximation, which is used to 

calculate starting value.  

 The power, width of 95% CI and width of 99% CI provided PINT and the normal 

approximation method are different from each other by no more than 0.001 across 300 

situations, which is comparable to rounding error. Thus, the method provided by Snijders 

and Bosker (1993) and the normal approximation method are essentially the same. 

PAWS calculates the starting values accurately. The methods provided by Snijders and 

Bosker (1993) and the normal approximation, however, do not account for sampling error 

of intraclass correlation in the dependent variable. Also, these methods treat the covariate 

as a fixed effect. From now on, I will refer to the normal approximation method and the 

Snijders and Bosker method as the approximate method. 

Accuracy of the Approximate Method 

 The power, width of 95% CI and width of 99% CI for the approximate method 

and the a priori Monte Carlo simulation method are mostly similar. For power, the 

differences between two methods range from -.07 to .04. The positive sign indicates that 

the approximate method is greater. For 95% and 99% CI of ES, the differences range 

from -2.07 to 0.04 and -2.72 to 0.06, respectively. Thus, in some situations, the 

approximate method underestimates the width of the CI of ES by a large amount. The 

discrepancies are mostly affected by the type of covariate, which is shown in Table 1. 
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The covariate with an intraclass correlation of 0.05 is the only condition that resulted in 

large discrepancies. Upon further exploration, it appears that an intraclass correlation of 

0.05 only resulted in large discrepancies when the dependent variable had an intraclass 

correlation of 0.25 and the total sample size was less than 500. 

 In sum, statistical power estimated by the approximate method and the a priori 

Monte Carlo simulation is similar. The widths of CI of ES estimated by both methods are 

mostly similar. When the model includes a covariate with a low intraclass correlation, 

however, the dependent variable with high intraclass correlation and less than total 

sample size of 500, the width of CI of ES estimated by the approximate method is lower 

than the width of CI of ES estimated by a priori Monte Carlo simulation method. More 

systematic explorations are needed, however, to pinpoint exactly which situations 

produce large discrepancies between the two methods.   
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Table 1 

Difference between the Approximate Method and the a Priori Monte Carlo Method in Estimating Power, 95% CI of ES, and 

99% CI of ES across Five Conditions. 

Type of Covariate 

Difference in Power Difference in 95% CI of ES Difference in 99% CI of ES 

M SD Min Max M SD Min Max M SD Min Max 

No Covariate -0.005 0.015 -0.073 0.014 0.001 0.007 -0.009 0.028 0.002 0.009 -0.012 0.038 

Individual-level Covariate -0.009 0.015 -0.044 0.012 -0.004 0.006 -0.024 0.023 -0.006 0.008 -0.032 0.030 

Covariate with ICC of 0.05 -0.004 0.014 -0.044 0.035 -0.128 0.319 -2.069 0.003 -0.168 0.419 -2.719 0.004 

Covariate with ICC of 0.25 -0.008 0.015 -0.049 0.021 -0.007 0.006 -0.026 0.008 -0.009 0.007 -0.034 0.011 

Group-level Covariate -0.009 0.014 -0.063 0.006 0.002 0.009 -0.027 0.044 0.003 0.012 -0.036 0.057 

All 5 Conditions -0.007 0.015 -0.073 0.035 -0.027 0.150 -2.069 0.044 -0.036 0.198 -2.719 0.057 

Note.  Positive sign indicates that the approximate method is greater. Each type of covariate contains 60 situations. CI = 

Confidence Interval. ES = Effect Size. ICC = Intraclass Correlation.

 
 

 
 

 
          4

0
 



 

 41 

 

 

 

CHAPTER IV 

CONCLUSION 

 The aim of this study is to develop an easy-to-use program to estimate sample 

sizes in CRD, based on either power or width of CI of ES. PAWS can estimate three 

characteristics of sample sizes simultaneously: number of clusters, cluster size, and 

proportion of treatment clusters. PAWS can estimate sample size combinations that 

provide the lowest budget given a specified level of statistical power or width of CI of 

ES. Also, PAWS can identify sample size combinations that yield the highest level of 

power, given a limited budget. Unlike other programs with similar functions, PAWS 

calculates an effect size that is standardized by the individual-level standard deviation. 

Thus, PAWS is particularly useful for researchers who wish to estimate the expected 

effect on an intervention on individuals in groups rather than the expected effect in terms 

of within-treatment group variance. PAWS uses two steps in sample size estimation. 

First, PAWS will find the starting values of sample sizes by using the normal 

approximation method. After that, the starting values will be used in the a priori Monte 

Carlo simulation to create simulated samples and determine whether the sample sizes 

combination has the desired characteristic. If not, PAWS will adjust the sample sizes 

combination until it achieved the desired characteristic. The a priori Monte Carlo 

simulation is better than the normal approximation method because the a priori Monte 
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Carlo simulation treats the intraclass correlation of the dependent variable as a random 

variable rather than as a fixed number. Also, the covariate in the model is also treated as 

random variable rather than as a fixed effect. Indeed, considering the intraclass 

correlation and the covariate as random characteristics is probably more valid because it 

accounts for the fact that these characteristics vary from sample to sample and can have 

dramatic and unexpected effects on power and CI of ES. 

The results of PAWS were compared with PINT 2.2. The power and width of CI 

of ES calculated by the normal approximation method were the same as PINT 2.2 (within 

rounding error). The normal approximation method and the a priori Monte Carlo 

simulation method provide similar power and width of CI of ES. However, in some 

situations described above, the methods differ significantly in their estimates of the width 

of CI of ES. In such cases, the a priori Monte Carlo simulation method results are 

preferred. 

Further development of PAWS may include options to consider the ES that is 

standardized by cluster-level or total-level standard deviation. PAWS may include how to 

account for multiple covariates. Also, the algorithm in PAWS may be improved to 

increase speed in estimating sample sizes by a priori Monte Carlo simulation, especially 

for estimating sample sizes combination based on degree of certainty of width of CI of 

ES. Finally, PAWS may be developed for other experimental designs, such as the 

multisite experiment (Raudenbush & Liu, 2000) or growth curve modeling. 
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APPENDIX A 

VARIANCE OF TREATMENT EFFECTS 

First, I derive the formula of variance of treatment effects in the two-group CRD 

both with and without a covariate. In CRD, the dependent variable scores of each group 

can be partitioned in matrix notation as  

               

where 

              

              

          

 In the design without a covariate, the design matrix is 

   

 
 
 
 
   

   

  
    

 
 
 

 

where Xj is 1 for treatment groups and 0 for control groups with 

          

         

 In the design with a covariate, the covariate is partitioned into between- and 

within-cluster effects and the design matrix is 



 

 48 

   

 
 
 
 
 
         

   
 

         
   

 

    
         

   
  
 
 
 
 

 

where Xj is 1 for treatment groups and 0 for control groups with 

               

Assuming that the individual-level covariate effect (  ) does not vary across clusters, the 

model does not include the slope error. Therefore, the cluster error vector is 

         

To simplify, the covariate has an overall mean of 0 and variance of 1. The variance of the 

predicted score is 

                      
        

    

Note that, in the model without a covariate,        and       
  change to    and   , 

respectively. The matrix is 

  

 
 
 
 
 
             

              

                   
        

    
                          

 
 
 
 
 
 

 

 Matrix   has compound symmetry. That is, it has constant variance (all the 

elements of the diagonal are equal) and constant covariance (all the off-diagonal elements 

are equal). The inverse of a matrix with compound symmetry also has compound 

symmetry. Therefore, there are only two elements to find: on-diagonal and off-diagonal 

elements. 

 The first step is to find       . According to matrix lemma, 
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 The V matrix can be partitioned as 

        
             

        
                 

 Thus, 

                   
   

  
                    

    

                 
  

 

      
           

    

          
       

      
        

    

 The on-diagonal elements of the inverse are 

   
   

       

       
 

             
              

                   
        

    
                          

 

 
 

           

 

 The determinant of the last matrix can be derived by matrix lemma, similar to 

det(V) with the result as 

   
           

      
        

      
 

 Therefore, the on-diagonal elements are 

   
   

   
           

      
        

      

   
       

      
        

  

 

   
   

      
             

       
                

 
 

 The off-diagonal elements of the inverse are 
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 The determinant of the matrix is the same as the determinant of a similar matrix 

which can be transformed by linear operations. Therefore, I subtract the second to the last 

rows by the first row as 

   
    

 

      
  

                   

       
   

    
         

 

  

           

 

   
    

      

      
  

    
       

   

    
         

 

  

           

 

   
    

      

      
          

 
 

      
    

       
   

    
         

 

 
 

           

 

   
    

            
      

   
       

      
        

   

 

   
    

      

      
        

          
 

 Let 

   
      

      
        

          
 

  
 

      
  

 The inverse matrix,    , can be written as 
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 The variance of regression coefficients can be calculated by 

            
      

 

   

 

  

 

 This equation can be simplified in the two condition treatment effects as 

            
      

  

   

    
      

 

      

 

  

 

where kT is the number of treatment clusters and k is the number of clusters. The    in the 

treatment and control condition have the treatment variable values of 1 and 0, 

respectively. 

 In the model without a covariate, the expression of treatment condition is 

  
        

              

               
  

   
      

  

   

  
                  

                   
  

 The expression of control condition is 

  
        

        
   

  

   
      

 

      

  
          

   
  

 Therefore, the variance of the regression coefficients is 
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 The variance of the regression coefficient of difference between two condition 

means can be found in the element (2, 2), which is 

         
        

                                    
 

         
 

              
 

  When substituting D and F in the equation, the variance of treatment effect is the 

same the Equation 12, that is 

         
  

     

        
 

 In the model with a covariate, the expression of the treatment condition is 

  
       

 
 
 
 
 
 

                 
        

                 
        

           
  

  

   
 

   
          

          
  

         
 
 
 
 
 

 

   
      

  

   

  

 
 
 
 
 
 
 
 
 
 
                              

 
  

   

                             
 

  

   

            
  

 
 

   

  

   

 

          
 

  

   
          

 
  

   
           

  
  

   
 
 
 
 
 
 
 
 
 
 
 
 

 

 The expression of the control condition is 
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 Therefore,  

            
      

  

   

    
      

 

      

 

  

 

 
 
 
 
 
 
 
 
 
 
                             

 
 

   

                             
 

  

   

            
  

 
 

   

 

   

 

          
 

 

   
          

 
  

   
           

  
 

   
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 Because the variance of the covariate is 0 and the number of individuals is equal 

across clusters, the covariate expression can be simplified as 
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 Also, in the model, I assumed that the treatment variable and the covariate are not 

correlated. Thus, the average of the covariate in treatment and control conditions are zero, 

as 

   
 

  

   
     

    

 Thus, the variance of regression coefficients can be simplified as 

            
      

  

   

    
      

 

      

 

  

 

 
 
 
 
                   

                    
        

 

              
  
 
 
 
  

 

 The variance of difference between two conditions is the element (2, 2) of this 

matrix, which can be simplified by 

         
       

             
    

where C22 is the element (2, 2) of the conjoint matrix and 
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and 

     

          
       

 

             

  

                     
             

  

Thus, 

         
                 

             
 

                               
             

 
 

         
 

              
 

  When substituting D and F in the equation, the variance of the treatment effect is 

the same as the Equation 21, that is 
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APPENDIX B 

RELATIONSHIP BETWEEN TREATMENT EFFECTS AND  

PROPORTION OF VARIANCE EXPLAINED 

This section will show the link between the regression coefficient and the 

proportion of variance explained. The cluster- and individual-level error variances of the 

models with and without a covariate can be linked as 

               
                

                    
                 

 Because I assume that the covariate and the treatment variable are not correlated 

and the average of the covariate is 0, the cluster variance of the null model can be 

partitioned as 

          
          

    
           

and the error variance of the null model can be partitioned as 

  
               

          
  

  
    

   
        

  

Therefore, 
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and 

  
  

  
        

 

  
  

  
   

 

  
  

  
    

 
  

 

  
  

which are the same as the Equation 19 and 20. 
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APPENDIX C 

STARTING VALUE OF THE OPTIMAL VARIANCE OF  

THE DIFFERENCE BETWEEN CONDITIONS 

 Another equation to derive is the starting value of the optimal variance of the 

difference between conditions given power or width of CI of ES. I will assume the 

individual-level standard deviation is 1. It makes the individual-level ES equal to the raw 

score mean difference. I also assume that the ES is normally distributed. To find the 

starting value for a given power, the critical value of the null distribution equals the value 

in the alternative distribution in which the area under the alternative distribution and 

above the critical value that has a probability equal to power. Thus, the null hypothesis 

equation is 

       
                

        
 

and the alternative equation is 

         
                 

        
 

When isolating the critical value of both equations and solving for the variance of the 

individual-level ES, the result is the same as the Equation 30, that is 
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 To find the starting value given width of CI of ES, the distributions on the left and 

right hand side of the obtained ES are created. The centers of both distributions are the 

lower and upper bound, respectively. The right critical value of the lower bound 

distribution and the left critical value of the upper bound distribution equal the 

individual-level ES. Assuming that both distribution are normally distributed, the 

equation of the lower bound is 

       
              

        
 

and the equation of the upper bound is 

     
              

        
 

When isolating the individual-level ES of both equations and solving for variance of 

individual-level ES, the result is the same as the Equation 34, that is 

         
                       

           
 

 

  
 

       
 

 

 

 


