Thesis Defense Sunthud Pornprasertmanit W. Joel Schneider

# Sample Size Estimation in Cluster Randomized Design: PAWS-CRD

## Outline

- Introduction
- Problems
- The proposed solution
- Examples
- Accuracy

#### Introduction

- Cluster Randomized Design (CRD)
- Two types of sample sizes
  - Number of clusters
  - Cluster size
- Relationship with power
- Relationship with width of confidence interval (CI) of effect size (ES)

#### **Problems**

- Different combinations of sample sizes provide the same power or width of CI of ES.
  - Need the least expensive combination
- Different combinations provide the same budget
  - Need the combination with maximum power or minimum width of CI of ES

#### **Problems**

- Some programs can estimate power in CRD
  - e.g., PINT or Optimal Design.
- No program accounts for width of CI of ES
- No program provides the algorithm to find optimal combination.

#### The Proposed Solution

- This thesis developed the new program: PAWS-CRD
  - Power And Width of CI of ES for Sample size estimation for Cluster Randomized Design
  - Estimation based on
    - Normal approximation (Starting Value)
    - A priori Monte Carlo simulation

### The Proposed Solution

- Additional features
  - Allows unequal clusters between treatment and control conditions
  - Allows for different costs

|                 | Treatment | Control |
|-----------------|-----------|---------|
| Cluster Cost    |           |         |
| Individual Cost |           |         |

#### The Proposed Solution

- Additional features
  - Can control error variances by a covariate
  - Use ES standardized by individual-level standard deviation
  - Provide both post hoc and a priori analyses

- What happens when a covariate is added?
  (Post Hoc)
- 2. How many classrooms are required to detect a small effect? (A priori)
- 3. What is the best sample size combination, given a limited budget? (A priori)

- Effectiveness of training to administer cognitive behavioral therapy (King et al., 2002)
- 84 therapists assigned to two conditions
- 4 patients each
- DV = Beck Depression Inventory (BDI) Score
- ES with individual-level SD = 0.09
- Intraclass correlation = 0.013

- Result = ns
- Post Hoc power = 0.124
- If the researchers collected BDI scores of therapists,
  - Cluster-level variable
  - Cluster-level Error Variance Explained = 10%
- Can the covariate help to achieve high power?

- A new teaching method
- DV = Academic Achievement
- Intraclass correlation = 0.25
- Classroom size = 25
- Power = 0.8
- Meaningful ES = 0.2

Cost

|                 | Treatment | Control |
|-----------------|-----------|---------|
| Cluster Cost    | 600       | 300     |
| Individual Cost | 2         | 2       |

How many classrooms should be used?

- Parent-teacher relationship encouragement program
- DV = Conduct Problems (BASC-II)
- Multi-site study (Level 2 = Schools)
- Intraclass correlation = 0.05
- Meaningful ES = 0.2

- Use perceived positive school climate as a covariate
  - Intraclass correlation = 0.05
  - Amount of error variance explained in both levels
    18.49%

Cost

|                 | Treatment | Control |
|-----------------|-----------|---------|
| Cluster Cost    | 500       | 50      |
| Individual Cost | 30        | 2       |

- Budget = \$50,000
- Which is sample size combination providing the highest power?

- Using PINT
- Compare the programs' results of 300 situations

- Testing 300 situations based on
  - Method to find sample size
    - Achieve power of .8o
    - Achieve width of o.2
    - Achieve width of 0.5
    - Maximum power given \$500 budget
    - Maximum power given \$1000 budget

- Testing 300 situations based on
  - 2. Intraclass correlation of dependent variable
    - 0.05
    - 0.25
  - 3. ES of treatment variable
    - 0.2
    - 0.5

- Testing 300 situations based on
  - 4. Cluster costs if individual cost is \$1
    - None
    - **\$**5
    - **\$10**

- Testing 300 situations based on
  - Covariate characteristics
    - No covariate
    - Individual-level covariate
    - Covariate with intraclass correlation of o.o5
    - Covariate with intraclass correlation of 0.25
    - Cluster-level covariate

- $5 \times 2 \times 2 \times 3 \times 5 = 300$  situations
- Testing backward



- The starting values replicate the PINT.
- Difference between the starting values and the a priori Monte Carlo simulation
  - Power are similar across two approaches (Difference < 0.08)</li>

| Type of Coveriate          | Difference in Power |       |        |       |
|----------------------------|---------------------|-------|--------|-------|
| Type of Covariate          | M                   | SD    | Min    | Max   |
| No Covariate               | -0.005              | 0.015 | -0.073 | 0.014 |
| Individual-level Covariate | -0.009              | 0.015 | -0.044 | 0.012 |
| Covariate with ICC of 0.05 | -0.004              | 0.014 | -0.044 | 0.035 |
| Covariate with ICC of 0.25 | -0.008              | 0.015 | -0.049 | 0.021 |
| Group-level Covariate      | -0.009              | 0.014 | -0.063 | 0.006 |
| Total                      | -0.007              | 0.015 | -0.073 | 0.035 |

- The starting values replicate the PINT.
- Difference between the starting values and the a priori Monte Carlo simulation
  - Power are similar across two approaches (Difference < 0.08)</li>
  - Width of CI of ES are similar in most cases

| Type of Coveriate          | Difference in 95% CI of ES |       |        |       |
|----------------------------|----------------------------|-------|--------|-------|
| Type of Covariate          | M                          | SD    | Min    | Max   |
| No Covariate               | 0.001                      | 0.007 | -0.009 | 0.028 |
| Individual-level Covariate | -0.004                     | 0.006 | -0.024 | 0.023 |
| Covariate with ICC of 0.05 | -0.128                     | 0.319 | -2.069 | 0.003 |
| Covariate with ICC of 0.25 | -0.007                     | 0.006 | -0.026 | 0.008 |
| Group-level Covariate      | 0.002                      | 0.009 | -0.027 | 0.044 |
| Total                      | -0.027                     | 0.150 | -2.069 | 0.044 |

- The starting values are not accurate when
  - ICC of the covariate is 0.05
  - ICC of the dependent variable is 0.25
  - Total sample size result < 500</li>

#### Conclusion

- PAWS is developed to address problems that other programs neglected.
- The starting values are accurate in most situations.

# **Q & A**