Sunthud Pornprasertmanit W. Joel Schneider

Sample size estimation for Two-Condition Cluster Randomized Design

Outline

- Sample Size Estimation Approach
 - Power
 - Accuracy in Parameter Estimation
- Cluster Randomized Design (CRD)
- Sample Size Estimation in CRD
- Program Illustration

Two Approaches of Sample Size Estimation

- Power analysis
 - The probability of a significant result when there is a real effect in the population
- Width of Confidence Interval of Effect Size (Cl of ES)
 - The accuracy of effect size estimation

Power

• More $n \rightarrow$ Less $SE \rightarrow$ More power

Width of CI of ES

95 % CI of Cohen's d

• More $n \rightarrow \text{Less } SE \rightarrow \text{Narrower Width of } CI \text{ of } ES$

Cluster Randomized Design

 CRD is the analysis of group differences when groups are randomly assigned to different conditions

Cluster Randomized Design

- Using Independent *t*-test
 - Independence of error terms assumption has been violated
 - Similar experience within clusters
 - Inflate type I error
- CRD accounts for interdependence

Basic Concepts in CRD

- Two types of errors in CRD
 - Group-level error variance
 - Individual-level error variance
- Intraclass correlation (ICC)

 $ICC = \frac{Grouperror variance}{Grouperror variance + Individual error variance}$

Basic Concepts in CRD

Covariate Effect in CRD

Effect Size

Effect Size Definition

$$\delta = \frac{\mu_1 - \mu_2}{\sigma}$$

- In single level design, σ is pooled SD or $\sqrt{MS_{error}}$
- In CRD, three types of pooled SD
 - Group or $\sqrt{\tau}$
 - Individual or $\sqrt{\sigma^2}$
 - Total or $\sqrt{\tau + \sigma^2}$

Effect Size

- Hedges (2007) guideline
- In this study, use only individual pooled SD
- Assume $\sigma = 1 \rightarrow$ Effect Size = Condition Difference

- Formula by Hedges (2007)
- Phantom Variable Method by SEM packages

Effect Size =
$$\frac{\gamma_{Y \text{on} X}}{\sqrt{\sigma_{Within}^2}}$$

Find CI of ES based on Wald Statistic

Finding Sample Size

- Different Combination of three factors can yield the same power or width of CI
 - Number of Clusters (J)
 - Cluster size (n)
 - Proportion of treatment clusters (p)
- Different Combination also yield same costs

Finding Sample Size

Four costs

Total Cost = $pJ(TGC + (n \times TIC)) + (1 - p)J(CGC + (n \times CIC))$

Finding Sample Size

Three criteria

- Minimize number of overall individuals by specified power/width
 - Find various *n*, *J*, *p* for given power/width \rightarrow Find lowest *nJ*
- Minimize cost by specified power/width
 - Find various *n*, *J*, *p* for given power/width \rightarrow Find lowest cost
- Maximize power/ Minimize width by specified cost
 - Find various *n*, *J*, *p* for given cost \rightarrow Find highest power/width

Program Logic

- Find starting values by Wald Statistic formula using normal approximation
 - Given individual error variance = 1
- Find more accurate result by a priori Monte Carlo Simulation by Mplus

Program Illustration

- What happens when a covariate is added? (Post Hoc)
- 2. How many classrooms are required to detect a small effect? (A priori)

- Effectiveness of training to administer cognitive behavioral therapy (King et al., 2002)
- 84 therapists assigned to two conditions
- 4 patients each
- DV = Beck Depression Inventory (BDI) Score
- ES with individual-level SD = 0.09
- Intraclass correlation = 0.013

- Result = ns
- Post Hoc power = 0.124
- If the researchers collected BDI scores of therapists,
 - Cluster-level variable
 - Cluster-level Error Variance Explained = 10%
- Can the covariate help to achieve high power?

- A new teaching method
- DV = Academic Achievement
- Intraclass correlation = 0.25
- Classroom size = 25
- Power = 0.8
- Meaningful ES = 0.2

Cost

	Treatment	Control
Cluster Cost	600	300
Individual Cost	2	2

How many classrooms should be used?

Any Question???

