Thesis Progress Sunthud Pornprasertmanit W. Joel Schneider

Sample size estimation for Two-Group Cluster Randomized Design

Introduction

- Two approaches of sample size estimation
- Advantages of CRD over ANOVA
- Basic Concepts for CRD
- Two-Group CRD Formula
- Sample Size Estimation in CRD

Two Approaches of Sample Size Estimation

- Power analysis
 - The probability of significant result from real effect in population
- Width of CI of ES
 - The accuracy of effect size estimation

Power Analysis

- Example \rightarrow Independent *t*-test
 - Power of difference between two independent means

• More $n \rightarrow$ Less $SE \rightarrow$ More power

Width of CI of ES

• Example \rightarrow Independent *t*-test

95 % CI of a difference between independent means

• More $n \rightarrow \text{Less } SE \rightarrow \text{Less Width of } CI \text{ of } ES$

 CRD is the analysis of group differences when groups are randomly assigned to different conditions

- Characteristics of CRD data
 - Similarity within group
 - The errors within group are correlated
 - Inflated variability of random error

- Find error variance in each design
 - Variance-covariance matrix

 What happened when H_o is true and using ANOVA

ANOVA data

Independent error terms

$$Var(M_e) = \sigma_e$$

$$F = \frac{\sigma_{M_e}}{\sigma_e} = \frac{\sigma_e}{\sigma_e} = 1$$

Accurate type I error

CRD data

Correlated error terms

 $Var(M_e) > \sigma_e$

$$F = \frac{\sigma_{M_e}}{\sigma_e} = \frac{\sigma_e}{\sigma_e} \text{ then } F > 1$$

Inflated type I error

- CRD is accounted for inflated type I error
 - When groups are randomly assigned to different conditions
 - Subset of multilevel analysis

Basic Concepts in CRD

- Two types of errors in CRD
- Group-level error variance
- Individual-level error variance
- Intraclass correlation
- Effect Size in CRD

- Group error → common experience in a group
- Individual error → unique experience of each individual

$$Y = \overline{Y}_{..} + \alpha_k + u_{ki} + e_{kij}$$

Effect Size

Effect Size Definition

$$\delta = \frac{\mu_1 - \mu_2}{\sigma}$$

- In single level design, σ is pooled SD or $\sqrt{MS_{error}}$
- In CRD, three types of pooled SD
 - Group or $\sqrt{\tau}$
 - Individual or $\sqrt{\sigma}$
 - Total or $\sqrt{\tau + \sigma}$

Effect Size

Hedges (2007) proposed

- In group-individual levels \rightarrow use individual
 - School-Students; Organization-Incumbents
- In individual-measurement \rightarrow use group
 - Applicants-GRE scores; Individuals-Social Supports
- In this study, use only individual pooled SD
- Assume $\sigma = 1 \rightarrow$ Effect Size = Group Diff

Two-Group CRD

Equation

$$Y = M_0 + dX + u_j + e_{ij}$$

Test group difference (d)

$$Var(d) = \frac{\sigma/n + \tau}{Jp(1-p)}$$

Finding Sample Size

- Different Combination of three factors can yield the same power or width of CI
 - Number of Clusters (J)
 - Cluster size (n)
 - Proportion of treatment clusters (p)
- Different Combination also yield same costs

Finding Sample Size

Four costs

Total Cost = $pJ(TGC + (n \times TIC)) + (1 - p)J(CGC + (n \times CIC))$

Finding Sample Size

Three criteria

- Minimize number of overall individuals by specified power/width
 - Find various *n*, *J*, *p* for given power/width \rightarrow Find lowest *nJ*
- Minimize cost by specified power/width
 - Find various *n*, *J*, *p* for given power/width \rightarrow Find lowest cost
- Maximize power/ Minimize width by specified cost
 - Find various *n*, *J*, *p* for given cost \rightarrow Find highest power/width

Finding Sample Size: Criterion 1 and 2

- 1. Find Starting Value Normal Dist
 - Find combination of n, J, p for given power/width
 - 2) Find lowest *nJ* or cost
- 2. A Priori Monte Carlo Simulation by Mplus
 - 1) Adjust *n*,*J*, *p* for given power/width
 - 2) Find lowest *nJ* or cost
- 3. Summarize data by Mplus

Criterion 1 and 2: Power Analysis

Assume large sample theory

$$z = \frac{d}{\sqrt{Var(d)}}$$

Criterion 1 and 2: Power Analysis

Criterion 1 and 2: Cl of ES

Criterion 1 and 2 : Desired Variance Known

Since Var(d) is known, we solve for various n,
J, p by

$$Var(d) = \frac{\sigma/n + \tau}{Jp(1-p)}$$
 when $\sigma = 1$; $\tau = \rho/(1-\rho)$

- Find the combination of n, J, p which
 - Criterion 1: lowest nJ
 - Criterion 2: lowest total cost from

Total Cost = $pJ(TGC + (n \times TIC)) + (1 - p)J(CGC + (n \times CIC))$

Criterion 1 and 2: A Priori Monte Carlo Simulation

Criterion 1 and 2: A Priori Monte Carlo Simulation

Finding Sample Size: Criterion 3

 Since total cost is determined, we solve for various n, J, p by

Total Cost = $pJ(\mathbf{TGC} + (n \times \mathbf{TIC})) + (1-p)J(\mathbf{CGC} + (n \times \mathbf{CIC}))$

- Find the combination of n, J, p which have highest power or lowest width
- Confirm result of power and width by running Mplus

Other Features

Covariate

- Intraclass correlation of covariate
- Group effect and individual effect
- Degree of certainty in CI of ES

Program Illustration

