Thesis Progress
Sunthud Pornprasertmanit W. Joel Schneider

Sample size estimation for TwoGroup Cluster Randomized Design

Introduction

- Two approaches of sample size estimation
- Advantages of CRD over ANOVA
- Basic Concepts for CRD
- Two-Group CRD Formula
- Sample Size Estimation in CRD

Two Approaches of Sample Size Estimation

- Power analysis
- The probability of significant result from real effect in population
- Width of Cl of ES
- The accuracy of effect size estimation

Power Analysis

- Example \rightarrow Independent t-test
- Power of difference between two independent means

Effect Size $=0$
Specified Parameter ES

- More $n \rightarrow$ Less SE \rightarrow More power

Width of CI of ES

- Example \rightarrow Independent t-test
- $95 \% \mathrm{Cl}$ of a difference between independent means

- More $n \rightarrow$ Less SE \rightarrow Less Width of Cl of $E S$

Cluster Randomized Design

- CRD is the analysis of group differences when groups are randomly assigned to different conditions

Independent t-test

Two-group CRD

All sample size $=24$

$$
\text { All sample size }=24 \longrightarrow \begin{aligned}
& \text { J= } \\
& \\
& \\
&
\end{aligned}
$$

Cluster Randomized Design

- Characteristics of CRD data
- Similarity within group
- The errors within group are correlated
- Inflated variability of random error

Cluster Randomized Design

- Find error variance in each design
- Variance-covariance matrix

ANOVA data

σ_{e}	0	0	0	0	0
0	σ_{e}	0	0	0	0
0	0	σ_{e}	0	0	0
0	0	0	σ_{e}	0	0
0	0	0	0	σ_{e}	0
0	0	0	0	0	σ_{e}

$\operatorname{Var}\left(M_{e}\right)=\sigma_{e}$

CRD data

σ_{e}	τ	τ	0	0	0
τ	σ_{e}	τ	0	0	0
τ	τ	σ_{e}	0	0	0
0	0	0	σ_{e}	τ	τ
0	0	0	τ	σ_{e}	τ
0	0	0	τ	τ	σ_{e}

$\operatorname{Var}\left(M_{e}\right)>\sigma_{e}$

Cluster Randomized Design

- What happened when H_{0} is true and using ANOVA

ANOVA data

Independent error terms

$$
\begin{gathered}
\operatorname{Var}\left(M_{e}\right)=\sigma_{e} \\
F=\frac{\sigma_{M_{e}}}{\sigma_{e}}=\frac{\sigma_{e}}{\sigma_{e}}=1
\end{gathered}
$$

Accurate type l error

CRD data

Correlated error terms

$$
\operatorname{Var}\left(M_{e}\right)>\sigma_{e}
$$

$$
F=\frac{\sigma_{M_{e}}}{\sigma_{e}}=\frac{>\sigma_{e}}{\sigma_{e}} \text { then } F>1
$$

Inflated type I error

Cluster Randomized Design

- CRD is accounted for inflated type I error
- When groups are randomly assigned to different conditions
- Subset of multilevel analysis

Basic Concepts in CRD

- Two types of errors in CRD
- Group-level error variance
- Individual-level error variance
- Intraclass correlation
- Effect Size in CRD

Error terms

- ANOVA

Grand Mean

Error 11 Error 12

Error 13
Error 14
Error 21 Error 22 Error 23 Error 24
$Y_{k i}=Y .+\alpha_{k}+e_{k i}$

Error terms

- CRD

$$
Y_{k i j}=Y .+\alpha_{k}+u_{k i}+e_{k i j}
$$

Error terms

- Group error \rightarrow common experience in a group
- Individual error \rightarrow unique experience of each individual

$$
Y=\bar{Y}_{. .}+\alpha_{k}+u_{k i}+e_{k i j}
$$

Error terms

- CRD

$$
Y=\bar{Y}_{. .}+\alpha_{k}+u_{k i}+e_{k i j}
$$

Group Error Variance $\operatorname{Var}\left(u_{k i}\right)=\tau$

Intraclass

Correlation

$$
\rho=\frac{\boxed{\tau}}{\boxed{\tau}+\sigma}
$$

GError 11

GError 12
GError 21
GError 22

Individual Error Variance

$$
\operatorname{Var}\left(e_{k i j}\right)=\sigma
$$

Effect Size

- Effect Size Definition

$$
\delta=\frac{\mu_{1}-\mu_{2}}{\sigma}
$$

- In single level design, σ is pooled $S D$ or $\sqrt{M S_{\text {error }}}$
- In CRD, three types of pooled SD
- Group or $\sqrt{\tau}$
- Individual or $\sqrt{\sigma}$
- Total or $\sqrt{\tau+\sigma}$

Effect Size

- Hedges (2007) proposed
- In group-individual levels \rightarrow use individual
- School-Students; Organization-Incumbents
- In individual-measurement \rightarrow use group
- Applicants-GRE scores; Individuals-Social Supports
- In this study, use only individual pooled SD
- Assume $\sigma=1 \rightarrow$ Effect Size = Group Diff

Two-Group CRD

Equation

$$
Y=M_{0}+d X+u_{j}+e_{i j}
$$

Test group difference (d)

$$
\operatorname{Var}(d)=\frac{\sigma / n+\tau}{J p(1-p)}
$$

Finding Sample Size

- Different Combination of three factors can yield the same power or width of Cl
- Number of Clusters ($($)
- Cluster size (n)
- Proportion of treatment clusters (p)
- Different Combination also yield same costs

Finding Sample Size

- Four costs

Treatment Individual Cost (TIC)
Control Individual Cost (CIC)

Each Treatment Group Cost $=$ TGC $+(n \times$ TIC $)$
Each Control Group Cost $=\mathrm{CGC}+(n \times \mathrm{CIC})$

Number of Treatment Groups $=p J$
Number of Control Groups $=(1-p) \mathrm{J}$

Total Cost $=p J($ TGC $+(n \times$ TIC $))+(1-p) J(C G C+(n \times$ CIC $)$

Finding Sample Size

- Three criteria
- Minimize number of overall individuals by specified power/width
- Find various n, J, p for given power/width \rightarrow Find lowest $n J$
- Minimize cost by specified power/width
- Find various n, J, p for given power/width \rightarrow Find lowest cost
- Maximize power/ Minimize width by specified cost
- Find various n, J, p for given cost \rightarrow Find highest power/width

Finding Sample Size: Criterion 1 and 2

1. Find Starting Value - Normal Dist
1) Find combination of n, J, p for given power/width
2) Find lowest $n J$ or cost
2. A Priori Monte Carlo Simulation by Mplus
1) Adjust n, J, p for given power/width
2) Find lowest $n J$ or cost
3. Summarize data by Mplus

Criterion 1 and 2: Power Analysis

- Assume large sample theory

$$
z=\frac{d}{\sqrt{\operatorname{Var}(d)}}
$$

Criterion 1 and 2: Power Analysis

$$
\begin{gathered}
z_{1-\alpha / 2}=\frac{\text { Critical Value }-0}{\sqrt{\operatorname{Var}(d)}} \quad z_{1-\text { power }}=\frac{\text { Critical Value }-d}{\sqrt{\operatorname{Var}(d)}} \\
\operatorname{Var}(d)=\left(\frac{d}{z_{1-\alpha / 2}-z_{1-\text { power }}}\right)^{2}
\end{gathered}
$$

Criterion 1 and 2: CI of ES

$$
\begin{gathered}
z_{1-\alpha / 2}=\frac{d-\text { Lower bound }}{\sqrt{\operatorname{Var}(d)}} \quad z_{\alpha / 2}=\frac{d-\text { Upper bound }}{\sqrt{\operatorname{Var}(d)}} \\
\operatorname{Var}(d)=\left(\frac{\text { Upper bound }- \text { Lower bound }}{z_{1-\alpha / 2}-z_{\alpha / 2}}\right)^{2}=\left(\frac{\text { width }}{2 z_{1-\alpha / 2}}\right)^{2}
\end{gathered}
$$

Criterion 1 and 2 : Desired Variance

Known

- Since $\operatorname{Var}(d)$ is known, we solve for various n, J, p by

$$
\operatorname{Var}(d)=\frac{\sigma / n+\tau}{J p(1-p)} \quad \text { when } \sigma=1 ; \tau=\rho /(1-\rho)
$$

- Find the combination of n, J, p which
- Criterion 1: lowest $n J$
- Criterion 2: lowest total cost from

Total Cost $=p J($ TGC $+(n \times$ TIC $))+(1-p) J(C G C+(n \times$ CIC $)$

Criterion 1 and 2: A Priori Monte Carlo Simulation

Criterion 1 and 2: A Priori Monte Carlo Simulation

Find number of significant results

Modify n for each condition until reach specified power

Find average width

Modify n for each condition until reach specified width

Find $n J$ or cost for each

$J, p+.05$ Find n	$J, p+.05$	$J+1, p+.05$
$J-1, p$	$\underline{\text { Find } n}$	$\underline{J, p}$

Find n
$J-1, p-.05 \quad J, p-.05 \quad J+1, p-.05$

Find $n \quad$ Find $n \quad$ Find n nd p until finding lowest $n J$ or cost

Finding Sample Size: Criterion 3

- Since total cost is determined, we solve for various n, J, p by

$$
\text { Total Cost }=p J(\text { TGC }+(n \times \text { TIC }))+(1-p) J(C G C+(n \times \text { CIC })
$$

- Find the combination of n, J, p which have highest power or lowest width
- Confirm result of power and width by running Mplus

Other Features

- Covariate
- Intraclass correlation of covariate
- Group effect and individual effect

Degree of certainty in Cl of ES

Program Illustration

