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MONTE CARLO SIMULATIONS 

 Monte Carlo simulations are a popular tool for 

methodologists with many uses 

 Determine the accuracy of new methods 

 Compare different methods 

 Perform power analyses 
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MONTE CARLO SIMULATIONS 

 General steps in a Monte Carlo Simulation 

1. Specify population parameters 

2. Create a sample of size N, based on population 

parameters 

3. Analyze sample data from step 2 with chosen 

statistical method(s). 

4. Repeat steps 2 and 3 for each of r replications. 
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THE TYPICAL SIMULATION DESIGN 

 Most simulations done involve a fixed set of 

conditions and a fully factorial design. 

 This can result in an extremely large number of 

simulation conditions. 

 “Crossing conditions defined by ICC, J , and nj 

resulted in 4 X 6 X 3 = 72 conditions” Preacher, 

Zhang, & Zyphur (2011, p. 168) 

 Rhemtulla, Schoemann & Preacher (2011):  

    9 X 9 X 6 X 4 = 1944 conditions 

 

 Results from such a design are often interpreted 

via “eyeball” 
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THE TYPICAL SIMULATION DESIGN 

 Traditional designs require a trade off between 

study size and external validity. 

 More conditions = more external validity 

 More conditions = (much) larger design and more 

replications, greater difficulty interpreting results 
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THE TYPICAL SIMULATION DESIGN 

 Skrondal (2000) provided four recommendations 

to alleviate problems associated with simulation 

design 

 Use of a meta-model 

 Use of incomplete factorial designs 

 Use of common random numbers 

 Use of fewer replications per condition 
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CONTINUOUSLY VARYING FACTORS 

 Most factors in simulations are not categorical 

 e.g. sample size, parameter values 

 Most simulation studies treat continuous factors 

as categorical. 

 This can bias results or hide important relationships 

 What if factors in simulations were varied 

continuously? 
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CONTINUOUSLY VARYING FACTORS 

 With continuously varying factors, simulation 

parameters of interest (e.g., sample size, 

parameter values) are allowed to vary across a 

range of values.  

8 



CONTINUOUSLY VARYING FACTORS 

 Each replication is based on a population that is 

specified by a random draw from the range of 

population values. 

 A single (sample) dataset is generated and analyzed 

based on these parameters 

 

 Results from the simulation are analyzed using a 

regression meta-model. 
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EXAMPLE 1: METHODOLOGICAL 

INVESTIGATION 

 A researcher is interested in studying the 

performance of full information maximum 

likelihood with missing data. 

 Traditional approach:  

 Select fixed values of the percent of missing data (e.g., 5%, 

40%, 80%) 

 Generate 2000 replications in each condition 

 Analyze results using ANOVA/Present results in a large 

table 
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EXAMPLE 1: METHODOLOGICAL 

INVESTIGATION 

 A researcher is interested in studying the 

performance of full information maximum 

likelihood with missing data. 

 Continuous approach:  

 Specify a range of percent missing data (e.g., 1%-90%) 

 Generate 2000 replications with randomly varying percent 

missing data across replications 

 Analyze results using regression/Present results in figures 
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EXAMPLE 1: METHODOLOGICAL 

INVESTIGATION 
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EXAMPLE 1: METHODOLOGICAL 

INVESTIGATION 

 Data were generated and analyzed with the 

simsem package (Pornprasertmanit, Miller, & 

Schoemann, 2012) in R. 

 R based SEM simulation utility (available on CRAN) 

 Advanced missing data simulation techniques 

 Built in functions to continuously vary simulation 

parameters 
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EXAMPLE 1: METHODOLOGICAL 

INVESTIGATION 

 Traditional approach results 

 Parameter bias  

     

 

 

 

 Model Fit 

%Missing Bias (PS 1,2) 

.05 -.00004 

.40  .00021 

.80 -.00882 

R2 = 0.0009 

%Missing χ2 RMSEA CFI SRMR 

.05 8.13 .012 .998 .017 

.40 8.23 .013 .994 .029 

.80 8.16 .014 .956 .107 

R2  0.00008 0.002 0.19 0.86 14 



EXAMPLE 1: METHODOLOGICAL 

INVESTIGATION 

 Continuous approach results 

 Parameter bias 

 Bias (PS 1,2)  = -0.0042 + 0.0151(%missing ), R2 = .00004 

 

 Model Fit 

 χ2 = 8.0184 + 0.9365(%missing), R2 = .002 

 RMSEA = 0.0115 + 0.0053 (%missing), R2 = .005 

 CFI = 1.005  + -0.0387 (%missing), R2 = .120 

 SRMR = 0.001746 + 0.0899 (%missing),  R2 = .610 
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EXAMPLE 2: POWER ANALYSIS 

 Given population parameters, what sample size 

will results in a given level of power (e.g., .80)? 

 Traditional approach 

 Specify model and one sample size 

 Generate 2000 replications at this sample size 

 Record power for parameters of interest (proportion of 

replications with significant parameters) 

 If power ≠ .80, choose different sample size and try again. 
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EXAMPLE 2: POWER ANALYSIS 

 Given population parameters, what sample size 

will result in a given level of power (e.g., .80)? 

 Continuous approach 

 Specify model and a range of sample sizes 

 Generate 2000+ replications varying sample size across 

replications 

 Record each parameter’s significance for each replication (0 

not sig., 1 sig.) 
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EXAMPLE 2: POWER ANALYSIS 

 Given population parameters, what sample size 

will results in a given level of power (e.g., .80)? 

 Continuous approach 

 Use logistic regression to predict a parameter’s significance 

(across all replications) from the sample size of each 

replication. 

 The predicted probability from the logistic regression at a 

given N is power for that parameter at that N 
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EXAMPLE 2: POWER ANALYSIS 

F1 F2 

.7 .7 .7 .7 .7 .7 

.1 

.51 .51 .51 .51 
.51 

.51 

Y1 Y6 Y5 Y4 Y3 Y2 

1* 1* 
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EXAMPLE 2: POWER ANALYSIS 

 Results: What sample size results in power for 

the latent correlation of .80? 

 Continuous approach 

 3000 replications, randomly varying  N between 100-2000 

 logit(power) = β0 + β1N 

 Power = .80 when N = 1436 

 

 Traditional approach: 3000 replications at n = 1436 

 Power = .810 
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ADVANTAGES OF CONTINUOUSLY VARYING 

FACTORS 

 Graphical representation of results 

 Investigation of non-linear relationships 

 More efficient use of resources 

 Continuously varying parameters allow for fewer 

replications over a greater range of conditions. 

 Greater external validity 

 Power analyses are easily specified. 

 Can vary multiple factors over replications (e.g., 

sample size and effect size) 

 Can easily determine minimum detectable effect size  

24 



LIMITATIONS 

 Estimating empirical standard errors 

 Variability of parameter estimates across replications 

 Difficult to calculate when variability changes as a 

function of simulation parameters. 

 Possible solution: kernel ridge regression 

 Software implementation 

 Currently only automated in simsem 
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QUESTIONS? 

 Thanks to 

 Paul Johnson 

 Patrick Miller 

 

 

 

 

 

simsem: http://github.com/simsem/simsem/wiki 

example code: http://github.com/simsem/simsem/wiki 

email: schoemann@ku.edu 
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