
Updated: 4/4/2013 

R for Multilevel Models 

Sunthud Pornprasertmanit 

University of Kansas 

 

Table of Contents 

R BASICS ..................................................................................................................................................................... 4 

INSTALL PACKAGES ................................................................................................................................................... 4 

INTERACTION WITH R ................................................................................................................................................ 4 

READING DATA FILES ................................................................................................................................................ 4 

DESCRIPTIVE STATISTICS ........................................................................................................................................... 5 

MULTIPLE REGRESSION ............................................................................................................................................. 7 

MULTILEVEL REGRESSION BASICS ................................................................................................................ 10 

MODEL 0: NULL MODEL .......................................................................................................................................... 11 

MODEL 1: ANALYSIS OF COVARIANCE MODEL ........................................................................................................ 14 

MODEL 2: MEANS-AS-OUTCOMES MODEL............................................................................................................... 16 

MODEL 3: ADJUSTED-MEANS-AS-OUTCOMES MODEL ............................................................................................. 18 

MODEL 4: RANDOM COEFFICIENTS REGRESSION ..................................................................................................... 20 

MODEL 5: RANDOM COEFFICIENTS WITH FIXED INTERCEPT REGRESSION ............................................................... 22 

MODEL 6: INTERCEPTS- AND SLOPES-AS-OUTCOMES MODEL.................................................................................. 25 

MODEL 7: RANDOM COEFFICIENTS REGRESSION WITHOUT COVARIANCES BETWEEN RANDOM EFFECTS 

(REFERENCE MODEL) .............................................................................................................................................. 28 

MODEL 8: INTERCEPTS- AND SLOPES-AS-OUTCOMES MODEL WITHOUT CROSS-LEVEL INTERACTION (REFERENCE 

MODEL) ................................................................................................................................................................... 29 

MODEL 9: INTERCEPTS- AND SLOPES-AS-OUTCOMES MODEL WITHOUT RANDOM SLOPES (REFERENCE MODEL) ... 31 

MODEL 10: INTERCEPTS- AND SLOPES-AS-OUTCOMES MODEL WITHOUT RESIDUAL COVARIANCES BETWEEN 

RANDOM EFFECTS (REFERENCE MODEL) ................................................................................................................ 32 

COMPARISONS BETWEEN MODELS ................................................................................................................ 33 

DEVIANCE TEST ....................................................................................................................................................... 33 

Build-up Strategy ................................................................................................................................................ 36 

Tear-down Strategy ............................................................................................................................................. 36 

OTHER MODEL FIT STATISTICS ................................................................................................................................ 36 

PROPORTION OF VARIANCE EXPLAINED .................................................................................................................. 38 

Proportion of Dependent Variable’s Score Variance Explained ........................................................................ 38 

Proportion of Slope Variance Explained ............................................................................................................ 39 

CENTERING ............................................................................................................................................................. 40 

MODEL 1A: GRAND MEAN CENTERING / CENTERING FOR SPECIFIC VALUES AT L1 PREDICTORS ............................ 40 

MODEL 1B: GROUP MEAN CENTERING AT L1 PREDICTORS ..................................................................................... 42 

MODEL 11: CENTERING LEVEL-2 PREDICTOR .......................................................................................................... 43 

TESTING INTERACTIONS .................................................................................................................................... 45 



Sunthud Pornprasertmanit  2 

 

MODEL 12: LOWER-LEVEL INTERACTION ................................................................................................................ 46 

MODEL 12A: LOWER-LEVEL INTERACTION WITH GROUP MEAN CENTERING ........................................................... 48 

MODEL 13: UPPER-LEVEL INTERACTION .................................................................................................................. 51 

MODEL 14: CROSS-LEVEL INTERACTION .................................................................................................................. 54 

PROBING TWO-WAY INTERACTION .......................................................................................................................... 56 

Two Continuous Predictors ................................................................................................................................ 56 

One Continuous Predictor and One Categorical Predictor ............................................................................... 63 

Two Categorical Predictors ................................................................................................................................ 66 

GROWTH CURVE MODEL ................................................................................................................................... 69 

MODEL 15: LINEAR TRAJECTORY ............................................................................................................................ 69 

MODEL 16: QUADRATIC TRAJECTORY ..................................................................................................................... 74 

MODEL 17: LINEAR TRAJECTORY WITH TIME-INVARIANT COVARIATE ................................................................... 77 

MODEL 18: LINEAR TRAJECTORY WITH TIME-VARYING COVARIATE ...................................................................... 81 

MODEL 19: LINEAR TRAJECTORY WITH HETEROGENEITY OF VARIANCE ................................................................. 83 

MODEL 20: LINEAR TRAJECTORY WITH FIRST-ORDER AUTOCORRELATION ............................................................ 85 

MODEL 21: PIECEWISE LINEAR TRAJECTORY .......................................................................................................... 87 

REARRANGE DATA STRUCTURE ...................................................................................................................... 90 

MISSING DATA........................................................................................................................................................ 93 

STEP 1: DUMMY VARIABLES .................................................................................................................................... 94 

STEP 2: CENTERING.................................................................................................................................................. 94 

STEP 3: INTERACTIONS AND TRANSFORMATIONS ..................................................................................................... 94 

STEP 4: L2 ID, USED, AND UNUSED VARIABLES ...................................................................................................... 94 

STEP 5: TYPES OF USED VARIABLES ........................................................................................................................ 96 

STEP 6: REMAIN INTERACTIONS AND TRANSFORMATIONS IN IMPUTATION MODEL ................................................. 98 

STEP 7: START MULTIPLE IMPUTATION .................................................................................................................... 99 

STEP 8: CHECKING FOR CONVERGENCE ................................................................................................................... 99 

STEP 9: ANALYZE EACH IMPUTED DATA ............................................................................................................... 100 

STEP 10: POOLING RESULTS ................................................................................................................................... 101 

GROUP-MEAN CENTERING ..................................................................................................................................... 101 

ALTERNATIVE STATISTICAL TESTS ............................................................................................................. 102 

MULTIPARAMETER TEST ........................................................................................................................................ 102 

Example 1: The Difference in Linear Rates of Change .................................................................................... 102 

Example 2: The Influence of Significant Others ............................................................................................... 104 

Example 3: The Difference between Types of Schools ...................................................................................... 105 

MULTIVARIATE WALD TEST .................................................................................................................................. 106 

THREE-LEVEL MODEL ...................................................................................................................................... 106 

DATA STRUCTURE FOR THREE-LEVEL MODEL ...................................................................................................... 107 

MODEL 22: THREE-LEVEL NULL MODEL ............................................................................................................... 108 

MODEL 23: THREE-LEVEL LINEAR TRAJECTORY ................................................................................................... 110 

MODEL 24: TIME-INVARIANT COVARIATE IN THREE-LEVEL MODEL .................................................................... 113 

MODEL 25: LEVEL-3 TIME-INVARIANT COVARIATE .............................................................................................. 117 

MULTIVARIATE MODEL ................................................................................................................................... 119 

RESTRUCTURING DATA FOR MULTIVARIATE MODELS ........................................................................................... 119 

MODEL 26: MULTIVARIATE NULL MODEL ............................................................................................................. 121 



R for Multilevel Models  3 

MODEL 27: MULTIVARIATE LINEAR GROWTH MODEL .......................................................................................... 126 

MODEL 28: MULTIVARIATE LINEAR GROWTH MODEL WITH TIME-INVARIANT COVARIATE ................................. 131 

MULTIPLE GROUP ANALYSIS ......................................................................................................................... 134 

MODEL 29: MULTIPLE-GROUP NULL MODEL ........................................................................................................ 134 

MODEL 30: MULTIPLE-GROUP MODEL OF LINEAR TRAJECTORIES ........................................................................ 138 

MODEL 31: MULTIPLE-GROUP MODEL OF LINEAR TRAJECTORIES WITH TIME-INVARIANT COVARIATE ............... 142 

PROVIDE FEEDBACK .......................................................................................................................................... 146 

REFERENCES ........................................................................................................................................................ 146 

  



Sunthud Pornprasertmanit  4 

 

R Basics 

Install Packages 

In this section, the basic R commands that are useful for understanding a multilevel model in R are 

covered. First, we will need two main packages for multilevel models: lme4 (Bates, Maechler, & Bolker, 

2012) and nlme (Pinheiro et al., 2013). If those packages have not been installed, the packages can be 

installed: 

install.packages(c("lme4", "nlme")) 

The install.packages function is used to install a package into a hard drive. Normally, the name of 

a single package is listed in the function, such as install.packages("lme4"). If more than one 

package is needed, users can use the c function to concatenate two packages together. The lme4 package 

is mainly used. The nlme will be used for some techniques that require modeling error structures. If the 

packages are installed, the packages are still not available in the R program. The install.packages 

function is similar to keep the packages in a library. To use it, one should bring a desired package on the 

table by using the library function: 

library(lme4) 

Interaction with R 

In R, there are two ways to run a program. First, users may type a command to R console (the windows 

where the typing line has >). This approach is good for a quick command that users are not interested to 

save it for later use. Second, users can type commands in blank text file with .R extension. In the original 

R program, users can go to File…  New Script to open a blank page. Users can type the 

command and use Ctrl + R for Windows or Apple + Return for Mac to execute the command. If 

users write a script, users can comment commands by using a pound sign, #. The script can be saved in a 

file for later use. In running a multilevel model, using R script is highly recommended. 

Furthermore, R is case-sensitive. The function or object names in lowercase and uppercase can have 

different meanings. For example, there are functions called anova and Anova that means different 

things. Therefore, please be aware of the big and small cases. 

Reading Data Files 

Next, let’s import a data set into R program. The target data set is mlbook2_r.dat from Snijders and 

Bosker (2011). If the file is opened by basic text editor file, such as Notepad or TextEdit, the file 

contains with the first line of variable names and the other lines of data for each case. Each observation is 

separated by white spaces (i.e., tabs or blanks). Then, the read.table function can be used to import 

data: 

dat <- read.table("C:/Users/student/Desktop/mlbook2_r.dat", header = TRUE) 

In this line, dat is the object name that users wish to save the data to and the arrow, <-, means “is 

assigned as”. Thus, this line means to read a data file and save into the object named dat. In the 

read.table function, the first argument is the data file directory. Note that backslash is not allowed in 



R for Multilevel Models  5 

writing a directory in R. Users need to use forward slash, /, or double backslash instead, \\. The second 

argument, header, is a logical whether the first line contains variable names. If so, the argument is 

specified as TRUE. Otherwise, specify as FALSE. Users may use T and F as acronyms for TRUE and 

FALSE. By default, this function will separate observations by white spaces.  

Instead of specifying a data file directory, users may run the following commands: 

dat <- read.table(file.choose(), header = TRUE) 

R will provide a pop-up window to choose the directory of a data file. 

Sometimes, observations in a data set are separated by commas. Users may run a following line to read 

data file with comma separated values. 

dat2 <- read.table("C:/Users/student/Desktop/mlbook2_r.csv", header = TRUE, sep = ",") 

The sep argument represents the character used in separating observations. Users may check the 

read.csv function for reading the comma-separated-values data. 

Once the data is saved in R workspace, the data can be viewed by just typing its name. 

dat 

Rather than viewing the whole data set, the head or tail functions can be used to view a several first or 

a several last cases: 

head(dat) 

tail(dat) 

Descriptive Statistics 

To investigate a summary of descriptive statistics from a data set, the summary function can be used on 

the data object: 

summary(dat) 

    schoolnr      pupilNR_new      langPOST          ses               IQ_verb              sex         

 Min.   :  1.0   Min.   :   3   Min.   : 8.00   Min.   :-17.73000   Min.   :-7.87000   Min.   :0.0000   

 1st Qu.: 69.0   1st Qu.:1137   1st Qu.:36.00   1st Qu.: -7.73000   1st Qu.:-0.87000   1st Qu.:0.0000   

 Median :136.0   Median :2210   Median :42.00   Median : -1.73000   Median : 0.13000   Median :0.0000   

 Mean   :132.3   Mean   :2174   Mean   :41.41   Mean   :  0.04834   Mean   : 0.04418   Mean   :0.4872   

 3rd Qu.:189.0   3rd Qu.:3214   3rd Qu.:48.00   3rd Qu.:  9.27000   3rd Qu.: 1.13000   3rd Qu.:1.0000   

 Max.   :259.0   Max.   :4214   Max.   :58.00   Max.   : 22.27000   Max.   : 6.63000   Max.   :1.0000   

    Minority         denomina        sch_ses             sch_iqv            sch_min        

 Min.   :0.0000   Min.   :1.000   Min.   :-17.72700   Min.   :-4.81130   Min.   :0.00000   

 1st Qu.:0.0000   1st Qu.:1.000   1st Qu.: -4.38100   1st Qu.:-0.36680   1st Qu.:0.00000   

 Median :0.0000   Median :2.000   Median :  0.13000   Median : 0.09320   Median :0.00000   

 Mean   :0.0471   Mean   :2.254   Mean   :  0.02444   Mean   : 0.01574   Mean   :0.05169   

 3rd Qu.:0.0000   3rd Qu.:3.000   3rd Qu.:  4.43900   3rd Qu.: 0.46650   3rd Qu.:0.05900   

 Max.   :1.0000   Max.   :5.000   Max.   : 15.54500   Max.   : 2.47690   Max.   :0.92000 

From the data set, there are two ways to select a column from a data set. First, the dollar sign, $, can be 

used: 

dat$ses 

The second approach is to use a square bracket to select a desired element of a data set: 
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dat[ , "ses"] 

The data object has two dimensions: rows and columns. In the square bracket, two elements mean index 

of rows and index of columns. Because the first index is blank, all rows are selected. Because the second 

index is "ses", the column with the name of ses is selected. 

The mean, standard deviation, minimum, maximum, or variance can be computed from the target variable 

by the mean, sd, min, max, and var functions, respectively: 

mean(dat$ses) 

[1] 0.04833954 

sd(dat$ses) 

[1] 10.89977 

min(dat$ses) 

[1] -17.73 

max(dat$ses) 

[1] 22.27 

var(dat$ses) 

[1] 118.805 

Sometimes, a descriptive statistic of all variables in a data set is needed. The apply function can be used 

to apply a descriptive statistic to all row vectors or all column vectors. 

apply(dat, 2, mean) 

    schoolnr  pupilNR_new     langPOST          ses      IQ_verb          sex     Minority     denomina  

1.322866e+02 2.174353e+03 4.141299e+01 4.833954e-02 4.418308e-02 4.872272e-01 4.709952e-02 2.254125e+00  

     sch_ses      sch_iqv      sch_min  

2.444279e-02 1.573949e-02 5.168999e-02 

The first argument is the target data set. The second argument is the dimension to separate data into 

vectors: 1 = separate data by rows and 2 = separate data by columns. The third argument is the function to 

be applied on the separated vectors. Thus, this code means to separate data into different vectors based on 

columns and apply the mean function into each vector. 

Note that the output provides the result in scientific formula. Scientific formula Ae+B is equivalent to 

     . For example, 1.322866e+02                       . 

As another example, the standard deviation of each column (variable) can be computed: 

apply(dat, 2, sd) 

    schoolnr  pupilNR_new     langPOST          ses      IQ_verb          sex     Minority     denomina  

  70.4121415 1198.8182350    8.8930451   10.8997703    2.0407464    0.4999033    0.2118799    1.1072764  

     sch_ses      sch_iqv      sch_min  

   6.1485393    0.8177883    0.1243000 

Sometimes, the descriptive statistics of each group are of interest. The aggregate function can be used: 

aggregate(ses ~ sex, dat, mean) 
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  sex        ses 

1   0 -0.2764453 

2   1  0.3901529 

For the sex variable, the female group is coded as 1 and male group is coded as 0. The first argument of 

the aggregate function is a formula. The dependent variable is listed on the left hand side of the tilde, 

~, and the independent variable is listed on the right hand side of the tilde. In this case, the descriptive 

statistics of ses are separated by sex. The second argument is the target data set. The third argument is 

the target function, which is mean. 

To find a correlation, the cor function is used. However, not all variables are appropriate in finding 

correlation, such as schoolnr, which is school ID, or pupulNR-new, which is student ID. Thus, only 

three variables are selected to find correlation, langPOST, IQ_verb, and ses, then the cor function is 

applied: 

subsetdat <- dat[,c("langPOST", "IQ_verb", "ses")] 

cor(subsetdat) 

          langPOST   IQ_verb       ses 

langPOST 1.0000000 0.6084031 0.3674754 

IQ_verb  0.6084031 1.0000000 0.3258190 

ses      0.3674754 0.3258190 1.0000000 

The subsetdat saves the subset of the target data set. Because three variables are selected, the c 

function is used to concatenate variable names.  

Multiple Regression 

Let’s run a multiple regression on the target data set. For example, language scores (langPOST) are 

predicted by socioeconomic status (ses) and IQ-verbal score (IQ_verb). The lm function, which 

stands for linear model, can be used: 

out <- lm(langPOST ~ ses + IQ_verb, data = dat) 

summary(out) 

Call: 

lm(formula = langPOST ~ ses + IQ_verb, data = dat) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-30.0784  -4.3549   0.5034   4.8496  25.2241  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 41.30026    0.11222  368.03   <2e-16 *** 

ses          0.15449    0.01089   14.19   <2e-16 *** 

IQ_verb      2.38242    0.05816   40.97   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 6.878 on 3755 degrees of freedom 

Multiple R-squared: 0.4022,     Adjusted R-squared: 0.4019  

F-statistic:  1263 on 2 and 3755 DF,  p-value: < 2.2e-16 

For the lm function, the first argument is a formula. Similar to the aggregate function, the left hand 

side of the tilde is a dependent variable and the right hand side is the list of independent variables. 

Different independent variables in a formula are separated by a plus sign, +. This formula can be 

interpreted as “longPOST is predicted by ses and IQ_verb”. The second argument, data, is the 

target data set that contains the variables listed in the formula. 
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Unlike other statistical packages, the analysis result is saved in an object. The summary function can be 

used to provide the output. The output is separated into four parts: 

1. Call. The code that users used to build the output 

2. Residuals. The residual statistics including minimum, the first quartile, median, the third 

quartile, and maximum. 

3. Coefficients. The table of regression coefficient. The intercept is listed as the first line. The 

following lines are the regression coefficients of ses and IQ_verb. All rows provide the 

regression coefficient values, standard errors, t-statistics, and p-values. 

4. Others. The first row provides the standard error of the estimate and the degree of freedom. The 

second row provides the coefficient of determination (R-squared) and its adjusted value. The third 

row provides the F statistic and its p value for testing whether the coefficient of determination is 

significantly different from 0. 

Note that the assumption of uncorrelated errors is violated here because the data come from intact groups 

(schools). Multilevel model will be shown later. 

Not only the summary function can be run on the output, other functions can be applied on the output. 

1. coef. Request the regression coefficient in a model 

coef(out) 

(Intercept)         ses     IQ_verb  

 41.3002551   0.1544867   2.3824221 

2. confint. Request the confidence interval for each regression coefficient 

confint(out) 

                 2.5 %    97.5 % 

(Intercept) 41.0802377 41.520272 

ses          0.1331384  0.175835 

IQ_verb      2.2683992  2.496445 

3. vcov. Request the (asymptotic) variance-covariance matrix of a parameter estimate. This matrix 

represents the expected variance and covariance of statistics assuming that multiple random 

sampling can be drawn. The vcov matrix is useful for probing interaction. Note that the square 

roots of the diagonal elements are standard errors of regression coefficients. 

vcov(out) 

              (Intercept)           ses       IQ_verb 

(Intercept)  1.259325e-02  3.384850e-06 -0.0001394652 

ses          3.384850e-06  1.185635e-04 -0.0002063269 

IQ_verb     -1.394652e-04 -2.063269e-04  0.0033822660 

4. residuals. Request the residual values of each case. 

residuals(out) 

         1          2          3          4          5          6  

-2.0265141  0.1730243 -0.6872987  7.5031743 -9.3412320 -2.9148651 … 

5. predict. Request the predicted scores of each case. 

predict(out) 
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       1        2        3        4        5        6  

48.02651 44.82698 33.68730 38.49683 29.34123 32.91487 … 

If categorical variable is used as a predictor in a regression model, the categorical variable needs to be 

transformed as dummy-coded variables (or other types of coding, such as effect coding or contrast 

coding). For example, sex is a categorical variable. Users need to make sure that sex is in a valid 

format. In this case, females are coded as 1 and males are coded as 0 already. Thus, this variable is good. 

Let’s do some practice on dummy coding on the airquality data, which has been provided in R 

already: 

head(airquality) 

  Ozone Solar.R Wind Temp Month Day 

1    41     190  7.4   67     5   1 

2    36     118  8.0   72     5   2 

3    12     149 12.6   74     5   3 

4    18     313 11.5   62     5   4 

5    NA      NA 14.3   56     5   5 

6    28      NA 14.9   66     5   6 

In this example, the Ozone variable is predicted by Temp and Month. Month is a categorical variable 

with five categories. Thus, four dummy variables are needed. Let’s use Month = 5 as the reference 

group so four dummy variables can be made: 

m6 <- airquality$Month == 6 

m7 <- airquality$Month == 7 

m8 <- airquality$Month == 8 

m9 <- airquality$Month == 9 

airquality2 <- data.frame(airquality, m6, m7, m8, m9) 

tail(airquality2) 

    Ozone Solar.R Wind Temp Month Day    m6    m7    m8   m9 

148    14      20 16.6   63     9  25 FALSE FALSE FALSE TRUE 

149    30     193  6.9   70     9  26 FALSE FALSE FALSE TRUE 

150    NA     145 13.2   77     9  27 FALSE FALSE FALSE TRUE 

151    14     191 14.3   75     9  28 FALSE FALSE FALSE TRUE 

152    18     131  8.0   76     9  29 FALSE FALSE FALSE TRUE 

153    20     223 11.5   68     9  30 FALSE FALSE FALSE TRUE 

The double equal signs, ==, are used to evaluate whether the Month variable has a specific value. The 

results are provided as TRUE and FALSE, which R also understands as 1 and 0, respectively. The 

data.frame function is used to combine data and vectors into a single data set. 

Then, the lm function can be applied: 

out2 <- lm(Ozone ~ Temp + m6 + m7 + m8 + m9, data = airquality2) 

summary(out2) 

Call: 

lm(formula = Ozone ~ Temp + m6 + m7 + m8 + m9, data = airquality2) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-42.95 -13.86  -2.05  12.13 116.05  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -156.8309    21.7054  -7.225 6.94e-11 *** 
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Temp           2.7041     0.3182   8.498 1.05e-13 *** 

m6TRUE       -25.2449     9.5883  -2.633  0.00968 **  

m7TRUE       -10.8856     8.3786  -1.299  0.19659     

m8TRUE       -10.2475     8.3946  -1.221  0.22480     

m9TRUE       -19.6563     6.9842  -2.814  0.00579 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 22.92 on 110 degrees of freedom 

  (37 observations deleted due to missingness) 

Multiple R-squared: 0.5383,     Adjusted R-squared: 0.5173  

F-statistic: 25.65 on 5 and 110 DF,  p-value: < 2.2e-16 

The regression coefficients of the dummy variables are shown in the output. Alternatively, the Month 

variable can be transformed into the factor format, which R understands as categorical variable and R will 

transform to dummy variables automatically. 

airquality$Month <- factor(airquality$Month, labels=c("May", "Jun", "Jul", "Aug", "Sep")) 

out3 <- lm(Ozone ~ Temp + Month, data = airquality) 

summary(out3) 

Call: 

lm(formula = Ozone ~ Temp + Month, data = airquality) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-42.95 -13.86  -2.05  12.13 116.05  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -156.8309    21.7054  -7.225 6.94e-11 *** 

Temp           2.7041     0.3182   8.498 1.05e-13 *** 

MonthJun     -25.2449     9.5883  -2.633  0.00968 **  

MonthJul     -10.8856     8.3786  -1.299  0.19659     

MonthAug     -10.2475     8.3946  -1.221  0.22480     

MonthSep     -19.6563     6.9842  -2.814  0.00579 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 22.92 on 110 degrees of freedom 

  (37 observations deleted due to missingness) 

Multiple R-squared: 0.5383,     Adjusted R-squared: 0.5173  

F-statistic: 25.65 on 5 and 110 DF,  p-value: < 2.2e-16 

The factor function is used to change the variable format. The labels argument is used to put the 

label for each group. Then the Month variable can be put into the lm formula directly. The reference 

group is always the first group listed in the labels argument. 

Multilevel Regression Basics 
The script for running multilevel regression is similar to the script in multiple regression. Users just need 

to aware of the different roles of their variables. In multiple regression, there are two types of variables: 

independent variables and dependent variable. In multilevel regression, however, there are at least four 

types of variables: dependent variable, level-1 (L1) independent variable, level-2 (L2) independent 

variable, and L2 ID (the variable classifying each case into different groups).  

Different software packages require different types of data. For example, HLM can use two data sets: one 

for L1 and another for L2. In the lme4 and nlme packages in R, the data set must be in a long format. 

That is, all L1 and L2 variables are in the same data set where rows represent L1 units. One variable is 

used as L2 ID. The L2 independent variables must have the same values for the same L2 units. 
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Student ID School ID DV L1 IV L2 IV 

1 1 5 4 4 

2 1 6 1 4 

3 1 2 2 4 

4 1 3 6 4 

5 2 8 8 8 

6 2 9 9 8 

7 2 5 4 8 

8 2 4 2 8 

9 3 1 3 6 

10 3 7 4 6 

11 3 5 5 6 

12 3 3 7 6 

Notice that the L2 IV values in the same schools are the same. If users have data in the different format, 

they need to transform it into the appropriate format.  

Model 0: Null Model 

Let’s run a very basic model. The language scores (langPOST) is used as a dependent variable. In this 

data set, students are nested in different schools by school ID (schoolnr). The null model would be 

L1                  (   
 ) 

L2                  (     ) 

These notations represent 

     = The language score of Student i in School j 

     = The average language score within School j 

     = The average language score across all schools 

     = The deviation of the language score of Student i from the School j mean 

     = The deviation of the language score of School j mean from the grand mean 

    = The language score variance within schools (L1 variance) 

     = The language score variance across schools (L2 variance) 

From this model, the lme4 package can be used to run the model by the lmer function: 

library(lme4) 

m0 <- lmer(langPOST ~ 1 + (1|schoolnr), data = dat, REML=FALSE) 

summary(m0) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + (1 | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 26601 26620 -13298    26595   26596 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept) 18.125   4.2574   

 Residual             62.851   7.9278   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 
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(Intercept)  41.0046     0.3249   126.2 

In the lmer function, the first argument is formula. The dependent variable is separated from the 

independent variable by the tilde. The number 1 after the tilde is used to represent intercept, which can 

be viewed as an independent variable with a constant of 1. The addition notation is the random effect, 

(1|schoolnr). This random effect means the intercept (1) is random across school (schoolnr). 

Users may find the mapping from the formula and the reduced-form equation easily. 

langPOST ~ 1 + (1|schoolnr) 

       ( )     ( )      
      

      

   Fixed Effect + Random Effect 

The second argument, data, is the target data set. The third argument, REML, is to choose whether 

Residual Maximum Likelihood (REML) is used. If FALSE, Full-Information Maximum Likelihood 

(FIML) is used. The advantages and disadvantages of both methods are not discussed here (see Snijders 

& Bosker, 2011 for further details). 

Similar to multiple regression, the output is saved into an object and the summary function is used to get 

the output. The output is separated into three parts: 

1. Model Description and Model Fit Statistics. The model formula and the target 

data are described. Further, AIC, BIC, log-likelihood ratio (logLik), deviance, and deviance 

from REML (REMLdev) are provided as model fit statistics. 

2. Random Effects. The variance and standard deviation of random effects. In this model, the 

variance at school level (   (   )       ) and the variance at student level (   (   )     
 ) are 

listed, as well as their standard deviations. 

3. Fixed Effects. The regression coefficients, standard errors, and t-statistics are provided. In 

this case, the grand mean,    , is provided. 

There are no two important pieces of information here: p-value and intraclass correlation. Users may need 

a little program practice here. The p-value can be approximated by normal distribution—assuming that 

sample size in L2 is large (says > 30; see Snijders and Bosker, 2011, for a better approximation by t 

distribution). There are several steps to calculate the p-value
1
: 

1. The summary of the multilevel output can be saved as an object 

out0 <- summary(m0) 

2. Use the coef function on the summary object to extract the fixed-effect table. Save the fixed-

effect table: 

coef0 <- coef(out0) 

coef0 

            Estimate Std. Error  t value 

                                                      
1
 Check http://finzi.psych.upenn.edu/R/Rhelp02a/archive/76742.html for the reasons why Douglas Bates did not 

include the p value in the lme4 package. 

http://finzi.psych.upenn.edu/R/Rhelp02a/archive/76742.html
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(Intercept)  41.0046  0.3248646 126.2206 

3. The t values are saved as a vector 

tvalue0 <- coef0[,"t value"] 

4. Use the pnorm function to approximate the area under the normal distribution using the t value: 

pnorm(abs(tvalue0), lower.tail=FALSE) * 2 

[1] 0 

The abs function is the absolute value function to get rid of the negative sign (if any). Then, the 

area over the absolute of the t-value under the normal distribution is calculated—the 

lower.tail argument is FALSE so the calculation is based on the upper tail. The resulting 

area is multiplied by 2 to take into account both the left and right extremes. The figure below 

shows how the pnorm function works: 

 

The resulting p value is approximately 0 (report it as p < .001), which is congruent with very high 

t value. 

The intraclass correlation can be computed by the following steps: 

1. Save the summary of the multilevel output. 

2. Put @REmat after the summary output to get the random effect matrix 

ranef0 <- out0@REmat 

ranef0 

 Groups     Name          Variance Std.Dev. 

 "schoolnr" "(Intercept)" "18.125" "4.2574" 

 "Residual" ""            "62.851" "7.9278" 

3. Extract appropriate values for     and   . Use the as.numeric function to change the string 

format to number: 

tau00 <- as.numeric(ranef0[1, 3]) 

sigma2 <- as.numeric(ranef0[2, 3]) 
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4. Compute intraclass correlation,       (     
 ): 

icc <- tau00/(tau00 + sigma2) 

icc 

[1] 0.2238318 

You may calculate the intraclass correlation by using R as a fancy calculator: 

18.125 / (18.125 + 62.851) 

[1] 0.2238318 

Model 1: Analysis of Covariance Model 

In this model, a L1 predictor is put in the model with fixed slope. For example, the language scores 

(langPOST) is used as a dependent variable. The L1 predictor is verbal IQ score (IQ_verb). The 

analysis of covariance (ANCOVA) model would be 

L1                         (   
 ) 

L2             

        

     (     ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 0) 

     = The language score of Student i in School j 

     = The verbal IQ score of Student i in School j 

     = The expected average of language score within School j when the verbal IQ score is 0, 

which is also referred to as adjusted mean 

     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1. In this case, the expected changes across schools are the same. 

     = The expected average language score across all schools when the verbal IQ score is 0. 

     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1.  

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the adjusted language score average of School j (when the verbal IQ score 

is 0) from the grand mean of adjusted average across schools 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score 

The ANCOVA model can be run by the lmer function: 

m1 <- lmer(langPOST ~ 1 + IQ_verb + (1|schoolnr), data = dat, REML=FALSE) 

summary(m1) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + (1 | schoolnr)  
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   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24920 24945 -12456    24912   24917 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  9.8451  3.1377   

 Residual             40.4689  6.3615   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 41.05490    0.24336  168.70 

IQ_verb      2.50745    0.05438   46.11 

 

Correlation of Fixed Effects: 

        (Intr) 

IQ_verb 0.003 

The addition notation in the formula is the fixed effect of verbal IQ. The mapping from the formula and 

reduced-form equation would be 

langPOST ~ 1 + IQ_verb + (1|schoolnr) 

       ( )            ( )      
      

      

              Fixed Effect   +     Random Effect 

The output is similar to the null model. The model fit statistics are different from the null model. You 

may notice that the AIC and BIC are lower for the ANCOVA model, which means that the ANCOVA 

model fit better. Deviances between two models can be compared together by the deviance test, which 

will be described later.  

The variances of the random effects are different from those in the null model because the meanings of 

the random effects between two models are different.     and    in this model represents residual 

variances (rather than total variances in the null model). 

The output of fixed effect has two rows, which represent intercept (   ) and the effect of verbal IQ (   ). 

The later part of the output is the correlation of the fixed effects. The correlation is actually the 

asymptotic variance-covariance matrix of regression coefficient (vcov) that is transformed into a 

correlation matrix. In my opinion, the correlation is not really useful unless users wish to investigate for 

multicollinearity problem (which I think this is not an optimal option). 

To find the p-values of the fixed effect, the similar codes from the null model can be applied:
2
 

out1 <- summary(m1) 

coef1 <- coef(out1) 

tvalue1 <- coef1[,"t value"] 

pnorm(abs(tvalue1), lower.tail=FALSE) * 2 

(Intercept)     IQ_verb  

          0           0 

                                                      
2
 Because of multiple p-values, researchers may have a problem of inflated familywise error rate. Users may use the 

p.adjust function to correct the p-values. For example, the Holm’s method is used by 

p.adjust(pnorm(abs(tvalue1), lower.tail=FALSE) * 2, method = "holm")  
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To find the residual intraclass correlation, the codes used to find intraclass correlation in the null model 

can be applied: 

ranef1 <- out1@REmat 

tau00_1 <- as.numeric(ranef1[1, 3]) 

sigma2_1 <- as.numeric(ranef1[2, 3]) 

icc_1 <- tau00_1 / (tau00_1 + sigma2_1) 

icc_1 

[1] 0.1956732 

Model 2: Means-as-Outcomes Model 

In this model, L1 predictor is not included and L2 predictor is included in the model. For this example, 

the language scores (langPOST) is used as a dependent variable and predicted by the five types of 

schools (denomina). Because the type of school is a categorical variable, the variable must be 

transformed into the factor format: 

dat$denomina <- factor(dat$denomina) 

The frequency of each group can be examined by the table function: 

table(dat$denomina) 

   1    2    3    4    5  

1047 1369  922  180  240 

 The Means-as-Outcomes model would be 

L1                  (   
 ) 

L2                                              (     ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 0) 

     = The language score of Student i in School j 

     = A dummy variable whether School j is classified as Type 2 

     = A dummy variable whether School j is classified as Type 3 

     = A dummy variable whether School j is classified as Type 4 

     = A dummy variable whether School j is classified as Type 5 

     = The average language score within School j 

     = The average language score across all schools in Type 1 

     = The difference in language score between all schools in Type 2 and all schools in Type 1 

     = The difference in language score between all schools in Type 3 and all schools in Type 1 

     = The difference in language score between all schools in Type 4 and all schools in Type 1 

     = The difference in language score between all schools in Type 5 and all schools in Type 1 

     = The deviation of the language score of Student i from the School j mean 

     = The deviation of the language score of School j mean from the mean across schools in the 

same Type that School j is in 
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    = The language score variance within schools (L1 variance) 

     = The language score residual variance across schools (L2 variance) controlling for the type 

of schools 

The Means-as-Outcomes model can be run by the lmer function: 

m2 <- lmer(langPOST ~ 1 + denomina + (1|schoolnr), data = dat, REML=FALSE) 

summary(m2) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + denomina + (1 | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 26588 26632 -13287    26574   26567 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept) 15.833   3.9790   

 Residual             62.880   7.9297   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)  39.2940     0.5747   68.38 

denomina2     3.1839     0.7766    4.10 

denomina3     0.9820     0.8350    1.18 

denomina4     4.4124     1.5269    2.89 

denomina5     2.6042     1.3629    1.91 

 

Correlation of Fixed Effects: 

          (Intr) denmn2 denmn3 denmn4 

denomina2 -0.740                      

denomina3 -0.688  0.509               

denomina4 -0.376  0.279  0.259        

denomina5 -0.422  0.312  0.290  0.159 

The additional notation in this formula is the fixed effect of the types of schools. The mapping from the 

formula and reduced-form equation would be 

langPOST ~ 1 + denomina + (1|schoolnr) 

langPOST ~ 1 + d2 + d3 + d4 + d5 + (1|schoolnr) 

       ( )                                 ( )      
      

      

                                               Fixed Effect                  +                   Random Effect 

The output is similar to Model 1. In the random-effect section,     should be different from the null 

model because of different meanings.   , however, should have a similar value to Model 0. The output of 

the fixed effect has five rows, which represent intercept (   ) and the differences of a specific type of 

schools from the reference type of school (   ,    ,    , and    ).  

To find p-values of the fixed effect, the similar codes from the null model can be applied: 

out2 <- summary(m2) 

coef2 <- coef(out2) 

tvalue2 <- coef2[,"t value"] 

pnorm(abs(tvalue2), lower.tail=FALSE) * 2 

 (Intercept)    denomina2    denomina3    denomina4    denomina5  

0.0000000000 0.0000413438 0.2396008125 0.0038539161 0.0560301936  
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To find residual intraclass correlation, the codes used to find intraclass correlation in the null model can 

be applied: 

ranef2 <- out2@REmat 

tau00_2 <- as.numeric(ranef2[1, 3]) 

sigma2_2 <- as.numeric(ranef2[2, 3]) 

icc_2 <- tau00_2 / (tau00_2 + sigma2_2) 

icc_2 

[1] 0.2011485 

Model 3: Adjusted-Means-as-Outcomes Model 

In this model, Both L1 and L2 predictors are included in the model. The regression coefficient of the L1 

predictor, however, is not random across schools. For this example, the language scores (langPOST) is 

predicted by the verbal IQ scores (IQ_verb) and the five types of schools (denomina). The Adjusted-

Means-as-Outcomes model would be 

L1                         (   
 ) 

L2                                         

        

     (     ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 1) 

     = The language score of Student i in School j 

     = The verbal IQ score of Student i in School j 

     = A dummy variable whether School j is classified as Type 2 

     = A dummy variable whether School j is classified as Type 3 

     = A dummy variable whether School j is classified as Type 4 

     = A dummy variable whether School j is classified as Type 5 

     = The expected average of language score within School j when the verbal IQ score is 0, 

which is also referred to as adjusted mean 

     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1. In this case, the expected changes across schools are the same. 

     = The expected average language score across all schools when the verbal IQ score is 0 and 

the type of school is 1. 

     = The difference in adjusted language score (when the verbal IQ score is 0) between all 

schools in Type 2 and all schools in Type 1 

     = The difference in adjusted language score between all schools in Type 3 and all schools in 

Type 1 

     = The difference in adjusted language score between all schools in Type 4 and all schools in 

Type 1 

     = The difference in adjusted language score between all schools in Type 5 and all schools in 

Type 1 
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     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1.  

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the adjusted language score average of School j (when the verbal IQ score 

is 0) from the mean across schools in the same Type that School j is in 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score and type of schools 

The Adjusted-Means-as-Outcomes model can be run by the lmer function: 

m3 <- lmer(langPOST ~ 1 + IQ_verb + denomina + (1|schoolnr), data = dat, REML=FALSE) 

summary(m3) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + denomina + (1 | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24910 24960 -12447    24894   24894 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  8.7919  2.9651   

 Residual             40.4741  6.3619   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 40.12190    0.43551   92.13 

IQ_verb      2.50392    0.05438   46.05 

denomina2    2.19581    0.58807    3.73 

denomina3    0.12757    0.63261    0.20 

denomina4    2.02632    1.15697    1.75 

denomina5    0.81287    1.03187    0.79 

 

Correlation of Fixed Effects: 

          (Intr) IQ_vrb denmn2 denmn3 denmn4 

IQ_verb    0.041                             

denomina2 -0.741 -0.037                      

denomina3 -0.689 -0.030  0.510               

denomina4 -0.378 -0.045  0.280  0.260        

denomina5 -0.423 -0.038  0.313  0.291  0.160 

The formula includes the fixed effects of both verbal IQ and the types of schools. The mapping from the 

formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + denomina + (1|schoolnr) 

langPOST ~ 1 + IQ_verb + d2 + d3 + d4 + d5 + (1|schoolnr) 

       ( )                                        ( )      
      

      

                                                  Fixed Effect                        +                           Random Effect 

To find p-values of the fixed effect, the similar codes from the null model can be applied: 

out3 <- summary(m3) 

coef3 <- coef(out3) 

tvalue3 <- coef3[,"t value"] 
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pnorm(abs(tvalue3), lower.tail=FALSE) * 2 

(Intercept)      IQ_verb    denomina2    denomina3    denomina4    denomina5  

0.0000000000 0.0000000000 0.0001885398 0.8401800753 0.0798770541 0.4308395114  

To find residual intraclass correlation, the codes used to find intraclass correlation in the null model can 

be applied: 

ranef3 <- out3@REmat 

tau00_3 <- as.numeric(ranef3[1, 3]) 

sigma2_3 <- as.numeric(ranef3[2, 3]) 

icc_3 <- tau00_3 / (tau00_3 + sigma2_3) 

icc_3 

[1] 0.1784578 

Model 4: Random Coefficients Regression 

Similar to Model 1, a L1 predictor is put in the model but the slope is random across schools. For 

example, the language scores (langPOST) is predicted by verbal IQ score (IQ_verb) but the effect of 

verbal IQ allows to be varied across schools. The random-coefficients regression model would be 

L1                         (   
 ) 

L2             

            
[
   
   
]  ([

 
 
]  [
   
      

] ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 1) 

     = The language score of Student i in School j 

     = The verbal IQ score of Student i in School j 

     = The expected average of language score within School j when the verbal IQ score is 0, 

which is also referred to as adjusted mean 

     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1.  

     = The expected average language score across all schools when the verbal IQ score is 0. 

     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1.  

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the adjusted language score average of School j (when the verbal IQ score 

is 0) from the grand mean of adjusted average across schools 

     = The deviation of the slope of verbal IQ score of School j from the average across schools 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score 

     = The variance of the slope of verbal IQ score across schools 
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     = The covariance between the expected value of language score when the verbal IQ score 

equals 0 and the slope of verbal IQ scores 

        √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

The random-coefficients regression model can be run by the lmer function: 

m4 <- lmer(langPOST ~ 1 + IQ_verb + (1 + IQ_verb|schoolnr), data = dat, REML=FALSE) 

summary(m4) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + (1 + IQ_verb | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24891 24928 -12439    24879   24884 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr    

 schoolnr (Intercept)  9.77498 3.12650          

          IQ_verb      0.20244 0.44994  -0.768  

 Residual             39.75002 6.30476          

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)  41.1281     0.2425   169.6 

IQ_verb       2.5194     0.0633    39.8 

 

Correlation of Fixed Effects: 

        (Intr) 

IQ_verb -0.353 

The additional notation in this formula is the random effect of verbal IQ. The mapping from the formula 

and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + (1 + IQ_verb|schoolnr) 

       ( )            ( )             
      

      

              Fixed Effect        +          Random Effect 

The output is similar to the previous models. The random effects has an additional line of random slope of 

the effect of verbal IQ, which is    . The covariance,    , between random intercept and random slope is 

not listed here. Rather, the correlation,    , between random intercept and random slope is listed. Before 

interpreting the correlation, the meaning of verbal IQ equal 0 must be investigated. The average of the 

verbal IQ across all students is close to 0; therefore,     (or    ) can be viewed as the expected average of 

school language score when verbal IQ equals to its mean. Because the correlation is strongly negative, the 

school that has a low expected value of language score (when verbal IQ equals 0) will be more likely to 

have a stronger positive slope than the school with a high expected value. See the figure: 
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The grey lines are the regression lines of each school. The black line is the regression line from the 

average intercept and average slope across schools. See the vertical line representing the verbal IQ of 0. 

When the language score is low, the slope is steeper. As another insight from this figure, when the verbal 

IQ score is low (the left part of the X axis), the language score is lower on average and has more variance. 

When the verbal IQ score is high, the language score is higher on average and has less variance. 

To find p-values of the fixed effect, the similar codes from the null model can be applied: 

out4 <- summary(m4) 

coef4 <- coef(out4) 

tvalue4 <- coef4[,"t value"] 

pnorm(abs(tvalue4), lower.tail=FALSE) * 2 

(Intercept)     IQ_verb  

          0           0  

To find residual intraclass correlation, the codes used to find intraclass correlation in the null model can 

be applied (be careful on the position of     and   ): 

ranef4 <- out4@REmat 

tau00_4 <- as.numeric(ranef4[1, 3]) 

sigma2_4 <- as.numeric(ranef4[3, 3]) 

icc_4 <- tau00_4 / (tau00_4 + sigma2_4) 

icc_4 

[1] 0.1973747 

Model 5: Random Coefficients with Fixed Intercept Regression 

Similar to Model 4, a L1 predictor is put in the model but the slope is random across schools. However, 

the intercept is fixed across groups. For example, the language scores (langPOST) is predicted verbal IQ 
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score (IQ_verb). The effect of verbal IQ varies across schools. The expected language score when the 

verbal IQ is 0 is the same across schools. This model is rarely used in practice except some longitudinal 

data or repeated-measures design. The random-coefficients with fixed intercept regression model would 

be 

L1                         (   
 ) 

L2         

            

     (      ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 4) 

     = The language score of Student i in School j 

     = The verbal IQ score of Student i in School j 

     = The expected average of language score within School j when the verbal IQ score is 0, 

which is also referred to as adjusted mean. In this case, the adjusted mean is constant across 

schools. 

     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1.  

     = The expected average language score across all schools when the verbal IQ score is 0. 

     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1.  

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the slope of verbal IQ score of School j from the average across schools 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 

     = The variance of the slope of verbal IQ score across schools 

The random-coefficients with fixed intercept regression model can be run by the lmer function: 

m5 <- lmer(langPOST ~ 1 + IQ_verb + (0 + IQ_verb|schoolnr), data = dat, REML=FALSE) 

summary(m5) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + (0 + IQ_verb | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 25342 25367 -12667    25334   25340 

Random effects: 

 Groups   Name    Variance Std.Dev. 

 schoolnr IQ_verb  0.28423 0.53313  

 Residual         48.61650 6.97255  

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)  41.3671     0.1162   356.0 

IQ_verb       2.6806     0.0691    38.8 

 

Correlation of Fixed Effects: 

        (Intr) 

IQ_verb -0.023 
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Note that 0 is used instead of 1 in the parenthesis, which means that the random intercept is not 

estimated.
3
 If (IQ_verb|schoolnr) is specified, the function will still estimate the random intercept 

as a default. The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + (0 + IQ_verb|schoolnr) 

       ( )                    
      

      

              Fixed Effect     +      Random Effect 

In the output, the Random effects section has the variance of the random slope, which is    , but not 

the random intercept variance. Because there is only one random effect in L2, the correlation between 

random effects does not exist as well.  

To find p-values of the fixed effect, the similar codes from the null model can be applied: 

out5 <- summary(m5) 

coef5 <- coef(out5) 

tvalue5 <- coef5[,"t value"] 

pnorm(abs(tvalue5), lower.tail=FALSE) * 2  

(Intercept)     IQ_verb  

          0           0  

Because the random intercept does not exist, the intraclass correlation is not defined. 

Users may be wondering about the difference between Model 4 and Model 5. Let’s draw the regression 

lines of each group to see the difference: 

  

                                                      
3
 In lme4 version 0.999999-0, the code with fixed intercept and random slope has a problem when L1 predictor is 

in a factor format (e.g., sex is transformed into a factor format). Users should transform any L1 categorical variables 

into dummy variables by hand for a model with fixed intercept and random slope (similar to Model 5) 
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The grey lines are the regression lines of each school. The black line is the regression line from the 

average intercept and average slope across schools. Notice that in Model 5, the expected language score at 

verbal IQ of 0 is not varied (a point).  

Model 6: Intercepts- and Slopes-as-Outcomes Model 

From Model 4, a L2 predictor is used to predict both random intercepts and random slopes. Looking in a 

different view, from Model 3, a random slope is specified. For example, the language scores 

(langPOST) is predicted verbal IQ score (IQ_verb) and the type of schools (denomina). The slope 

of verbal IQ score on the language score is varying across schools. The random slope is also predicted by 

the type of schools. The intercepts- and slopes-as-outcomes model would be 

L1                         (   
 ) 

L2                                         

                                        
[
   
   
]  ([

 
 
]  [
   
      

] ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 4) 

     = The language score of Student i in School j 

     = The verbal IQ score of Student i in School j 

     = A dummy variable whether School j is classified as Type 2 

     = A dummy variable whether School j is classified as Type 3 

     = A dummy variable whether School j is classified as Type 4 

     = A dummy variable whether School j is classified as Type 5 

     = The expected average of language score within School j when the verbal IQ score is 0, 

which is also referred to as adjusted mean. 

     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1.  

     = The expected average language score across all schools when the verbal IQ score is 0 and 

the type of school is 1. 

     = The difference in adjusted language score (when the verbal IQ score is 0) between all 

schools in Type 2 and all schools in Type 1 

     = The difference in adjusted language score between all schools in Type 3 and all schools in 

Type 1 

     = The difference in adjusted language score between all schools in Type 4 and all schools in 

Type 1 

     = The difference in adjusted language score between all schools in Type 5 and all schools in 

Type 1 

     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1 given that the type of school is 1. That is the average slope of the verbal IQ among school 

with the type of 1. 

     = The difference in the slope of verbal IQ between all schools in Type 2 and all schools in 

Type 1 

     = The difference in the slope of verbal IQ between all schools in Type 3 and all schools in 

Type 1 
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     = The difference in the slope of verbal IQ between all schools in Type 4 and all schools in 

Type 1 

     = The difference in the slope of verbal IQ between all schools in Type 5 and all schools in 

Type 1 

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the adjusted language score average of School j (when the verbal IQ score 

is 0) from the mean across schools in the same Type that School j is in 

     = The deviation of the slope of verbal IQ score of School j from the expected slope across 

schools in the same type that School j is in 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score and the type of school 

     = The residual variance of the slope of verbal IQ score across schools controlling for the type 

of school 

     = The covariance between the residual of the random intercept and the residual of the random 

slope  

        √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

The intercepts- and slopes-as-outcomes model can be run by the lmer function: 

m6 <- lmer(langPOST ~ 1 + IQ_verb + denomina + IQ_verb*denomina + (1 + IQ_verb|schoolnr), data = 

dat, REML=FALSE) 

summary(m6) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + denomina + IQ_verb * denomina + (1 +      IQ_verb | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24881 24968 -12426    24853   24859 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr    

 schoolnr (Intercept)  8.69164 2.94816          

          IQ_verb      0.16195 0.40243  -0.826  

 Residual             39.77899 6.30706          

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                  Estimate Std. Error t value 

(Intercept)       40.22489    0.43295   92.91 

IQ_verb            2.68758    0.11224   23.95 

denomina2          2.15422    0.58451    3.69 

denomina3          0.09217    0.62872    0.15 

denomina4          2.21263    1.16046    1.91 

denomina5          0.65672    1.03226    0.64 

IQ_verb:denomina2 -0.19222    0.15510   -1.24 

IQ_verb:denomina3 -0.31980    0.16486   -1.94 

IQ_verb:denomina4 -0.62469    0.30638   -2.04 

IQ_verb:denomina5  0.01977    0.26655    0.07 

 

Correlation of Fixed Effects: 

            (Intr) IQ_vrb denmn2 denmn3 denmn4 denmn5 IQ_v:2 IQ_v:3 IQ_v:4 

IQ_verb     -0.290                                                         

denomina2   -0.741  0.215                                                  

denomina3   -0.689  0.200  0.510                                           

denomina4   -0.373  0.108  0.276  0.257                                    

denomina5   -0.419  0.122  0.311  0.289  0.156                             

IQ_vrb:dnm2  0.210 -0.724 -0.323 -0.145 -0.078 -0.088                      
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IQ_vrb:dnm3  0.198 -0.681 -0.146 -0.324 -0.074 -0.083  0.493               

IQ_vrb:dnm4  0.106 -0.366 -0.079 -0.073 -0.437 -0.045  0.265  0.249        

IQ_vrb:dnm5  0.122 -0.421 -0.091 -0.084 -0.046 -0.407  0.305  0.287  0.154 

In the formula, the asterisk is used to specify any types of interaction. In this case, the interaction of 

verbal IQ score and type of schools is specified by IQ_verb*denomina.
4
 The mapping from the 

formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + denomina  

  + IQ_verb*denomina  

  + (1 + IQ_verb|schoolnr) 

langPOST ~ 1 + IQ_verb + d2 + d3 + d4 + d5  

  + IQ_verb*d2 + IQ_verb*d3 + IQ_verb*d4 + IQ_verb*d5  

  + (1 + IQ_verb|schoolnr) 

       ( )                                     

                                                    

               ( )             

The output is similar to the previous models. In the fixed effects, the colon, :, means the interaction 

effect. For example, IQ_verb:denomina2 is the interaction effect between verbal IQ score,    , and 

the dummy variable representing school type 2,    , which represents    . 

To find p-values of the fixed effect, the similar codes from the null model can be applied: 

out6 <- summary(m6) 

coef6 <- coef(out6) 

tvalue6 <- coef6[,"t value"] 

pnorm(abs(tvalue6), lower.tail=FALSE) * 2  

      (Intercept)           IQ_verb         denomina2         denomina3         denomina4  

     0.000000e+00     1.022534e-126      2.282213e-04      8.834484e-01      5.656111e-02  

        denomina5 IQ_verb:denomina2 IQ_verb:denomina3 IQ_verb:denomina4 IQ_verb:denomina5  

     5.246490e-01      2.152141e-01      5.240791e-02      4.145315e-02      9.408734e-01  

If the resulting p values are not easy to see which effects are significant, a little trick can be used by 

comparing the resulting p values with a priori alpha level (e.g., .05): 

(pnorm(abs(tvalue6), lower.tail=FALSE) * 2) < .05 

      (Intercept)           IQ_verb         denomina2         denomina3         denomina4  

             TRUE              TRUE              TRUE             FALSE             FALSE  

        denomina5 IQ_verb:denomina2 IQ_verb:denomina3 IQ_verb:denomina4 IQ_verb:denomina5  

            FALSE             FALSE             FALSE              TRUE             FALSE 

Note that these p-values are not adjusted for familywise error rate. 

To find the residual intraclass correlation, the codes used to find intraclass correlation in the null model 

can be applied (be careful on the position of     and   ): 

ranef6 <- out6@REmat 

tau00_6 <- as.numeric(ranef6[1, 3]) 

sigma2_6 <- as.numeric(ranef6[3, 3]) 

                                                      
4
 Users can specify interactions by colon, : , or asterisk, *. Check the difference between two methods by going to 

the help page of the formula function by typing ?formula 

Fixed Effect 

Random Effect 
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icc_6 <- tau00_6 / (tau00_6 + sigma2_6) 

icc_6 

[1] 0.1793177 

Users may be wondering about the difference between Model 3 and Model 6. Model 3 does not have the 

random slope whereas Model 6 has random slope. Let’s draw the regression lines of each group to see the 

difference: 

  

In the figures, different colors represent different school types. The solid line is the regression line based 

on the average intercept and average slope across schools with the same type. The thin line is the 

regression line of each school. There are many more thin lines in the graphs but most of them are 

overlapped with the solid line. Notice that Model 3 has a constant slope across schools and the slopes of 

each color are the same. On the other hand, Model 6 has different slopes across schools and the slopes of 

each color are different. 

I will show you four more models. These models will be used as reference models only in order to make a 

deviance test, which is shown later. The parameter estimates in this model could not be trusted because 

the constrained parameters in these models are very important. The constraint can make a serious model 

misspecification that makes biased estimates of the parameters in the model. 

Model 7: Random Coefficients Regression without Covariances between Random 

Effects (Reference Model) 

This model is similar to Model 4 but the covariance between random intercepts are random slopes is fixed 

to 0. The random-coefficients regression model without covariances between random effects would be 

L1                         (   
 ) 

L2             

            
[
   
   
]  ([

 
 
]  [
   
    

] ) 

The interpretations of those notations are similar with Model 4 except     and     are all 0.  
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The random-coefficients regression model without covariances between random effects can be run by the 

lmer function: 

m7 <- lmer(langPOST ~ 1 + IQ_verb + (1|schoolnr) + (0 + IQ_verb|schoolnr), data = dat, 

REML=FALSE) 

summary(m7)  

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + (1 | schoolnr) + (0 + IQ_verb | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24913 24945 -12452    24903   24908 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  9.81365 3.13267  

 schoolnr IQ_verb      0.17618 0.41974  

 Residual             39.80108 6.30881  

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 41.09121    0.24370  168.61 

IQ_verb      2.53511    0.06294   40.28 

 

Correlation of Fixed Effects: 

        (Intr) 

IQ_verb 0.001 

The formula in this model is interesting. The random intercept is listed in the first parenthesis to be 

random across schools. The random slope is listed in the second parenthesis with 0 to tell the program 

that the covariance between random intercept and random slope is not estimated. The mapping from the 

formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + (1|schoolnr) + (0 + IQ_verb|schoolnr) 

       ( )            ( )             
      

      

              Fixed Effect        +          Random Effect 

The output is similar to Model 4 but the correlation between the random intercepts and random slopes in 

the Random effects section was not shown. That is, the covariance/correlation was fixed to 0. Note 

that this model should not be used as a final model. Even though the covariance/correlation is small, the 

covariance/correlation should be estimated. Otherwise, the fixed correlation can lead to biases in the 

parameters in the model. Therefore Model 4 is preferred to Model 7. The reason why this model is listed 

here because this model can be used to compare with Model 4 by deviance test listed below. 

Model 8: Intercepts- and Slopes-as-Outcomes Model without Cross-level Interaction 

(Reference Model) 

This model is similar to Model 6 but the cross-level interactions are not specified. That is,    ,    ,    , 

and     are constrained to 0. The intercepts- and slopes-as-outcomes model without cross-level 

interaction would be 

L1                         (   
 ) 

L2                                         

            
[
   
   
]  ([

 
 
]  [
   
      

] ) 

The interpretations of these notations are similar to Model 6 except the followings:  
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     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1. 

     = The deviation of the slope of verbal IQ score of School j from the average slope across 

schools (   ) 

     = The variance of the slope of verbal IQ score across schools  

     = The covariance between the residual of the random intercept and the random slope  

        √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

The intercepts- and slopes-as-outcomes model without cross-level interaction can be run by the lmer 

function: 

m8 <- lmer(langPOST ~ 1 + IQ_verb + denomina + (1 + IQ_verb|schoolnr), data = dat, REML=FALSE) 

summary(m8) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + denomina + (1 + IQ_verb | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24880 24942 -12430    24860   24860 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr    

 schoolnr (Intercept)  8.78392 2.96377          

          IQ_verb      0.19834 0.44536  -0.792  

 Residual             39.75412 6.30509          

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 40.42641    0.42065   96.10 

IQ_verb      2.51732    0.06308   39.91 

denomina2    1.93266    0.55312    3.49 

denomina3   -0.29465    0.59491   -0.50 

denomina4    1.23024    1.04196    1.18 

denomina5    0.77965    0.94095    0.83 

 

Correlation of Fixed Effects: 

          (Intr) IQ_vrb denmn2 denmn3 denmn4 

IQ_verb   -0.171                             

denomina2 -0.734 -0.022                      

denomina3 -0.683 -0.021  0.522               

denomina4 -0.386 -0.036  0.299  0.278        

denomina5 -0.428 -0.036  0.331  0.308  0.176 

Note that, in the formula, the product term is not listed. The mapping from the formula and reduced-form 

equation would be 

langPOST ~ 1 + IQ_verb + denomina  

  + (1 + IQ_verb|schoolnr) 

langPOST ~ 1 + IQ_verb + d2 + d3 + d4 + d5  

  + (1 + IQ_verb|schoolnr) 

       ( )                                     

               ( )             

The parameter estimates from this model could be wrong because the cross-level interactions were not 

listed. The effect of not listing the cross-level interaction could be a serious misspecification and the 

parameter estimates in the current model is biased (Raudenbush & Byrk, 2002). Therefore, Model 6 is 

preferred to Model 8. This model, however, is useful in comparing with Model 6 to check the significance 

of the cross-level interactions using deviance test. 

Fixed Effect 

Random Effect 
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Model 9: Intercepts- and Slopes-as-Outcomes Model without Random Slopes 

(Reference Model) 

This model is similar to Model 6. However, the random slopes and the covariance between random 

intercepts and random slopes are dropped. That is,     and     are fixed to 0. The random slope is also 

predicted by the type of schools. The intercepts- and slopes-as-outcomes model without random slopes 

would be 

L1                         (   
 ) 

L2                                         

                                    

     (      ) 

The interpretations of these notations are similar to Model 6. 

The intercepts- and slopes-as-outcomes model without random slopes can be run by the lmer function: 

m9 <- lmer(langPOST ~ 1 + IQ_verb + denomina + IQ_verb*denomina + (1|schoolnr), data = dat, 

REML=FALSE) 

summary(m9) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + denomina + IQ_verb * denomina + (1 |      schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24906 24981 -12441    24882   24889 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  8.7363  2.9557   

 Residual             40.3543  6.3525   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                  Estimate Std. Error t value 

(Intercept)       40.18310    0.43512   92.35 

IQ_verb            2.69086    0.09812   27.42 

denomina2          2.13444    0.58695    3.64 

denomina3          0.07139    0.63139    0.11 

denomina4          2.24679    1.16412    1.93 

denomina5          0.66261    1.03209    0.64 

IQ_verb:denomina2 -0.18142    0.13644   -1.33 

IQ_verb:denomina3 -0.39670    0.14539   -2.73 

IQ_verb:denomina4 -0.63913    0.27524   -2.32 

IQ_verb:denomina5  0.04242    0.23424    0.18 

 

Correlation of Fixed Effects: 

            (Intr) IQ_vrb denmn2 denmn3 denmn4 denmn5 IQ_v:2 IQ_v:3 IQ_v:4 

IQ_verb      0.074                                                         

denomina2   -0.741 -0.055                                                  

denomina3   -0.689 -0.051  0.511                                           

denomina4   -0.374 -0.028  0.277  0.258                                    

denomina5   -0.422 -0.031  0.313  0.291  0.158                             

IQ_vrb:dnm2 -0.053 -0.719  0.031  0.037  0.020  0.022                      

IQ_vrb:dnm3 -0.050 -0.675  0.037  0.032  0.019  0.021  0.485               

IQ_vrb:dnm4 -0.026 -0.356  0.019  0.018 -0.119  0.011  0.256  0.241        

IQ_vrb:dnm5 -0.031 -0.419  0.023  0.021  0.012 -0.060  0.301  0.283  0.149 

The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + denomina  

  + IQ_verb*denomina  

  + (1|schoolnr) 

langPOST ~ 1 + IQ_verb + d2 + d3 + d4 + d5  

  + IQ_verb*d2 + IQ_verb*d3 + IQ_verb*d4 + IQ_verb*d5  

  + (1|schoolnr) 

       ( )                                     
Fixed Effect 

Random Effect 
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               ( )      

The output is similar to Model 6 but the variance of random slope and the correlation between the random 

intercepts and random slopes in the Random effects section were not listed. If this model was true, 

the type of schools would be the only reason why the effects of verbal IQ were different across schools. 

This situation is rarely true, however. This model is usually compared with Model 6 to check whether the 

predictors on the slope equation are the only explanation why the effects of L1 predictors are varied 

across L2 units.  

Model 10: Intercepts- and Slopes-as-Outcomes Model without Residual Covariances 

between Random Effects (Reference Model) 

This model is similar to Model 6. However, the covariance between random intercepts and random slopes 

are dropped. That is,     and     are fixed to 0. The intercepts- and slopes-as-outcomes model without 

random slopes would be 

L1                         (   
 ) 

L2                                         

                                        
[
   
   
]  ([

 
 
]  [
   
    

] ) 

The interpretations of these notations are similar to Model 6. 

The intercepts- and slopes-as-outcomes model without residual covariances between random effects can 

be run by the lmer function: 

m10 <- lmer(langPOST ~ 1 + IQ_verb + denomina + IQ_verb*denomina + (1|schoolnr) + (0 + 

IQ_verb|schoolnr), data = dat, REML=FALSE) 

summary(m10) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + denomina + IQ_verb * denomina + (1 |      schoolnr) + (0 + IQ_verb | 

schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24903 24984 -12439    24877   24882 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  8.72342 2.9535   

 schoolnr IQ_verb      0.13734 0.3706   

 Residual             39.83406 6.3114   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                  Estimate Std. Error t value 

(Intercept)       40.20594    0.43579   92.26 

IQ_verb            2.71494    0.11150   24.35 

denomina2          2.14390    0.58776    3.65 

denomina3          0.06481    0.63266    0.10 

denomina4          2.22625    1.16414    1.91 

denomina5          0.67794    1.03387    0.66 

IQ_verb:denomina2 -0.19289    0.15407   -1.25 

IQ_verb:denomina3 -0.37552    0.16440   -2.28 

IQ_verb:denomina4 -0.63523    0.30517   -2.08 

IQ_verb:denomina5  0.01697    0.26258    0.06 

 

Correlation of Fixed Effects: 

            (Intr) IQ_vrb denmn2 denmn3 denmn4 denmn5 IQ_v:2 IQ_v:3 IQ_v:4 

IQ_verb      0.066                                                         

denomina2   -0.741 -0.049                                                  

denomina3   -0.689 -0.045  0.511                                           

denomina4   -0.374 -0.025  0.278  0.258                                    

denomina5   -0.422 -0.028  0.313  0.290  0.158                             

IQ_vrb:dnm2 -0.048 -0.724  0.027  0.033  0.018  0.020                      
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IQ_vrb:dnm3 -0.045 -0.678  0.033  0.029  0.017  0.019  0.491               

IQ_vrb:dnm4 -0.024 -0.365  0.018  0.017 -0.105  0.010  0.264  0.248        

IQ_vrb:dnm5 -0.028 -0.425  0.021  0.019  0.010 -0.058  0.307  0.288  0.155 

The formula in this model is a combination between Model 6 and Model 7. The random intercept is listed 

in the first parenthesis to be random across schools. The random slope is listed in the second parenthesis 

with 0 to tell the program that the covariance between random intercept and random slope is not 

estimated. The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + denomina  

  + IQ_verb*denomina  

  + (1|schoolnr) + (0 + IQ_verb|schoolnr) 

langPOST ~ 1 + IQ_verb + d2 + d3 + d4 + d5  

  + IQ_verb*d2 + IQ_verb*d3 + IQ_verb*d4 + IQ_verb*d5  

  + (1|schoolnr) + (0 + IQ_verb|schoolnr) 

       ( )                                     

                                                    

               ( )             

The output is similar to Model 6 but the partial correlation between the random intercepts and random 

slopes in the Random effects section was not listed. That is, the partial covariance/correlation is 

fixed to 0. Note that this model should not be used as a final model. Even though the partial 

covariance/correlation is small, the partial covariance/correlation should be estimated. Otherwise, the 

fixed correlation can lead to biases in the parameters in the model. Therefore, Model 6 is preferred to 

Model 10. The reason why this model is listed here because this model can be used to compare with 

Model 6 by deviance test. 

Comparisons between Models 

Deviance Test 

In the previous section, I illustrated how to run different multilevel models. You may notice that the test 

statistics for the variance of random effects do not exist. The deviance test (or likelihood ratio test) can be 

used to test for null hypotheses of any elements in the covariance matrix of random effects, such as    , 

   , or    . Furthermore, the z test (Wald test) mentioned above is not the optimal method for significance 

testing even for fixed effects. Theoretically, the z test is based on the first-order Taylor series 

approximation of the standard errors of parameter estimates. The deviance test is based on the second-

order Taylor series approximation so, in principle, the deviance test should provide more accurate 

significance testing (Cheung, 2009). Furthermore, the deviance test can be used to compare more than one 

parameter at once, such as testing the contribution of    by testing both     and     simultaneously. 

In R, the deviance test is relatively easy. Users can compare two models by simply using the anova 

function: 

anova(m1, m4) 

Data: dat 

Models: 

m1: langPOST ~ 1 + IQ_verb + (1 | schoolnr) 

m4: langPOST ~ 1 + IQ_verb + (1 + IQ_verb | schoolnr) 

   Df   AIC   BIC logLik  Chisq Chi Df Pr(>Chisq)     

m1  4 24920 24945 -12456                              

Fixed Effect 

Random Effect 
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m4  6 24891 24928 -12439 33.382      2  5.639e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The arguments of the anova function are only the results from the lmer function. The order of objects 

does not matter—m4 can be listed before m1. In the output, Model 1 was compared with Model 4. The 

chi-square value is 33.382, which can be computed by the difference between log-likelihood values 

(       (      )) or the difference between deviances (           ). The degree of freedom 

is calculated by the difference in the number of estimated parameters. Because     and     are not 

estimated in Model 1, the degree of freedom is 2. If the chi-square value and degree of freedom are 

calculated manually, the p value can be calculated by the pchisq function: 

pchisq(33.382, 2, lower.tail=FALSE) 

[1] 5.638853e-08 

The results from the anova function and the pchisq function match each other. Note that the most 

importance things in using the deviance test are 1) to make sure that two models are nested and 2) to 

realize what we are testing. In comparing between Model 1 and Model 4, the random slopes are 

compared. Because the effect is significant, the model with random slope is preferred. The following table 

shows the examples of model comparison using deviance test and its interpretation. The highlighted rows 

represent the popular uses of deviance test. 

Models Null 

hypothesis 

Result Interpretation 

M0 vs. M1       p < .001 The effect of verbal IQ was significant. 

M0 vs. M2       

      

      

      

p < .001 The means of language scores across different 

schools were significantly different. 

M1 vs. M3       

      

      

      

p = .001 The adjusted means of language scores 

(controlling for verbal IQ) across different 

schools were significantly different. 

M1 vs. M4       

      

p < .001 The effect of verbal IQ was random across 

school and the random slope was related to 

random intercept. 

M1 vs. M7       p = .003 The effect of verbal IQ was significantly 

random across school. 

M2 vs. M3       p < .001 The effect of verbal IQ controlling for the type 

of schools was significant.  

M3 vs. M8       

      

 p < .001 The effect of verbal IQ controlling for the type 

of schools was random across school and the 

random slope was related to random intercept. 

M3 vs. M9       

      

      

      

p = .020 The cross-level interactions between type of 

schools and verbal IQ were significant in 

predicting language scores. 

M4 vs. M5       

      

p < .001 The expected value of language score when 

verbal IQ is 0 was varied across schools. The 

random intercept was related to random slope 
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Models Null 

hypothesis 

Result Interpretation 

M4 vs. M6       

      

      

      

      

      

      

      

p = .001 The effect of type of schools on random 

intercept or random slope was significant. That 

is, type of schools should be added in the 

model. 

M4 vs. M7       p < .001 The covariance between random intercept and 

random slope was significant. 

M4 vs. M8       

      

      

      

p < .001 The effect of type of schools on random 

intercept was significant. 

M5 vs. M7       p < .001 The expected value of language score when 

verbal IQ is 0 was varied across schools.  

M6 vs. M8       

      

      

      

p = .15 The cross-level interactions between type of 

schools and verbal IQ were not significant in 

predicting language scores. 

M6 vs. M9       

      
p < .001 The type of schools did not fully explain the 

variation between slopes across schools. The 

random slope was also correlated with random 

intercepts. 

M6 vs. M10       p < .001 The type of schools did not fully explain the 

covariance between random intercepts and 

random slopes. 

M9 vs. M10       p = .021 The type of schools did not fully explain the 

variation between slopes across schools. 

Note that some pairs or comparison provided the same test. For example, the test of cross-level 

interactions can be tested by (Model 3 vs. Model 9) or (Model 6 vs. Model 8). You may notice that the 

first comparison was significant but the second comparison was not significant. This difference is the 

reason why, sometimes, build-up strategy and tear-down strategy (which are both exploratory) winds up 

with different models. Note that, even worse, different experts have different opinions on how to 

implement those exploratory strategies. Therefore, building a model based on theory is strongly 

encouraged. 

If, at the end of the day, the cross-level interactions must be evaluated, in my opinion, the comparison 

between Model 6 and Model 8 was more trustworthy. The accuracy of the deviance test decreases when 

the degree of misspecification of the nested (restricted) model is higher. Model 3 was misspecified 

because the random slope was not included. The misspecification in Model 3 was much stronger than in 

Model 8. Thus, I trust the comparison between Model 6 and Model 8 more and I tend to conclude that the 

cross-level interactions were not significant.  

Let’s run examples of using build-up strategy and using tear-down strategy and examine how deviance 

test can be used in these situations. Remember that if two nested models are significantly different from 
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each other, the more complex model (parent model) is preferred. If two nested models are not 

significantly different from each other, parsimonious model (nested model) is preferred. 

Build-up Strategy 

Here are the steps of build-up strategy when language score is predicted by IQ score and type of schools. 

1. Null model (Model 0) 

2. Random intercept, L1 predictor with a fixed slope (Model 1). Model 0 vs. Model 1: 

p < .001. Therefore, Model 1 is preferred. 

3. Random intercept, L1 and L2 predictors with fixed slope (Model 3). Model 1 vs. Model 3: 

p = .001. Therefore, Model 3 is preferred. 

4. Look for random effects on a variable-by-variable basis (Model 8). Model 3 vs. Model 8: 

 p < .001. Therefore, Model 8 is preferred. 

5. Look for cross-level interactions (Model 6). Model 8 vs. Model 6: p = .15. 

Therefore, Model 8 is preferred.  

Tear-down Strategy  

Here are the steps of tear-down strategy when language score is predicted by IQ score and type of 

schools. 

1. Full model with cross-level interactions (Model 6).  

2. Drop cross-level interactions (Model 8). Model 8 vs. Model 6: p = .15. Therefore, 

Model 8 is preferred because Model 8 provided equivalent fit to Model 6 with a fewer number of 

parameters. 

3. Drop random effects (Model 3). Model 8 vs. Model 3:  p < .001. Model 8 and 

Model 3 did not have the same amount of model fit. Therefore, Model 8 is preferred because the 

drop of parameters provided significantly reduction in model fit. 

In this case, the build-up and tear-down strategies led to the same conclusions. However, in reality, the 

numbers of L1 and L2 predictors are much higher. The chance of two strategies winding up to a different 

model is high. 

Other Model Fit Statistics 

Deviance test is not the only option for a model comparison. Users may notice that the first section of the 

output of the lmer function provides AIC and BIC for a model comparison. In general, a model with 

lower AIC or BIC is preferred. Users can compare it manually, which may be very tedious. The following 

code can be used to aggregate AIC/BIC information into the same table. 

First, the model outputs are aggregated into a single object by the list function. 

models <- list(m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10) 

The models object will be saved as a list of outputs. Because we have a list of similar objects, a function 

can be applied to all elements in the list simultaneously. In this case, the summary function is applied to 

each element. The function that helps us to apply the summary function elementwise is the lapply 

function: 
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models.summary <- lapply(models, summary) 

The first argument is a list of similar objects. The second argument is the function to be applied 

elementwise. The models.summary object will be a list of the summaries of all 11 objects. Next, we 

would like to extract the model fit information from the summaries of all objects. The model fit 

information can be extracted from the "AICtab" slot of the summaries. For a single output, the slot 

function can be used: 

m0sum <- summary(m0) 

slot(m0sum, name = "AICtab") 

      AIC      BIC    logLik deviance  REMLdev 

 26601.28 26619.98 -13297.64 26595.28 26595.69 

However, we wish to get model fit from all outputs in a list at the same time. The lapply function could 

be used to get the model fit results simultaneously. 

lapply(models.summary, slot, name = "AICtab") 

[[1]] 

      AIC      BIC    logLik deviance  REMLdev 

 26601.28 26619.98 -13297.64 26595.28 26595.69 

 

[[2]] 

      AIC      BIC    logLik deviance  REMLdev 

 24920.17 24945.09 -12456.08 24912.17 24917.14 

… 

The first argument is the list of similar object. The second argument is the function. Then, additional 

arguments that users wish to pass to the specified elementwise function (slot in this case) can be listed 

in the third or the following arguments.  

The output is quite inconvenient to deal with. The results would be easier to handle if they were displayed 

in a table format. Instead of the lapply function, the sapply function can be used to reduce the result 

into a table format: 

sapply(models.summary, slot, "AICtab") 

         [,1]      [,2]      [,3]      [,4]      [,5]      [,6]     [,7]      [,8]      [,9]      [,10]     [,11]     

AIC      26601.28  24920.17  26588.06  24910.05  24890.79  25341.59 24880.92  24913.42  24879.71  24906.36  24903.03  

BIC      26619.98  24945.09  26631.68  24959.9   24928.18  25366.52 24968.16  24944.58  24942.03  24981.14  24984.04  

logLik   -13297.64 -12456.08 -13287.03 -12447.03 -12439.39 -12666.8 -12426.46 -12451.71 -12429.85 -12441.18 -12438.51 

deviance 26595.28  24912.17  26574.06  24894.05  24878.79  25333.59 24852.92  24903.42  24859.71  24882.36  24877.03  

REMLdev  26595.69  24917.14  26567.16  24893.92  24883.6   25339.57 24858.85  24908.1   24860.11  24888.71  24882.21 

To make a nicer table, column names can be added to the table: 

modelfit <- sapply(models.summary, slot, "AICtab") 

colnames(modelfit) <- c("m0", "m1", "m2", "m3", "m4", "m5", "m6", "m7", "m8", "m9", "m10") 

modelfit 

         m0        m1        m2        m3        m4        m5       m6        m7        m8        m9        m10       

AIC      26601.28  24920.17  26588.06  24910.05  24890.79  25341.59 24880.92  24913.42  24879.71  24906.36  24903.03  

BIC      26619.98  24945.09  26631.68  24959.9   24928.18  25366.52 24968.16  24944.58  24942.03  24981.14  24984.04  

logLik   -13297.64 -12456.08 -13287.03 -12447.03 -12439.39 -12666.8 -12426.46 -12451.71 -12429.85 -12441.18 -12438.51 

deviance 26595.28  24912.17  26574.06  24894.05  24878.79  25333.59 24852.92  24903.42  24859.71  24882.36  24877.03  

REMLdev  26595.69  24917.14  26567.16  24893.92  24883.6   25339.57 24858.85  24908.1   24860.11  24888.71  24882.21 

You will notice that Model 8 provided the lowest AIC whereas Model 4 provided the lowest BIC. The 

decision of using AIC or BIC is not a consensus. Hox (2010) proposed that BIC has a slightly better 

performance whereas Vrieze (2012) argued that BIC, in most case, is inappropriate. 
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Proportion of Variance Explained 

Proportion of Dependent Variable’s Score Variance Explained 

The proportion of total variance explained by predictors can be computed from the amount of residual 

variance reduced when predictors are included in a model. For example, from the null model (Model 0), 

verbal IQ was included to create Model 1. Users can calculate the amount of language score variances 

explained by verbal IQ. The proportion of variance explained (R
2
) can be computed by the following 

formulas: 
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where “|   ” means given L1 predictors (X) and L2 predictors (W) are included in the model.   
  is the 

proportion of DV variance explained at the lower level.     
  is the proportion of DV variance explained 

at the upper level. Note that   
  and     

  can be greater than 1 or less than 0, which are not a good 

property. Snijders and Bosker (2011) proposed the corrected formula for   
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where  ̃ is the harmonic mean of group sizes,   is the number of groups, and    is the size of Group j. 

Let’s run an example on finding the proportion of total variances of language scores explained by both 

verbal IQ and type of schools. That is, Model 0 is compared with Model 3.  

Remember that     and    were extracted in the ICC calculation. The similar codes can be applied here: 

out0 <- summary(m0) 

ranef0 <- out0@REmat 

tau00 <- as.numeric(ranef0[1, 3]) 

sigma2 <- as.numeric(ranef0[2, 3]) 

out3 <- summary(m3) 
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ranef3 <- out3@REmat 

tau00_3 <- as.numeric(ranef3[1, 3]) 

sigma2_3 <- as.numeric(ranef3[2, 3]) 

  
  can be calculated: 

(sigma2 - sigma2_3) / sigma2 

[1] 0.3560309 

    
  can be calculated: 

(tau00 - tau00_3) / tau00 

[1] 0.5149297 

To calculate  ̃ 
  and  ̃   

 , the harmonic mean needs to be calculated: 

groupsize <- table(dat$schoolnr) 

J <- length(groupsize) 

denominator <- sum(1/groupsize) 

harmonic.n <- J/denominator 

harmonic.n 

[1] 14.38582 

The table function is used to find the frequency (group size) of each school in the data set. Because the 

result of the table function is the frequency of each school, the number of schools, J, is calculated by 

the length of the frequency table by the length function. 

 ̃ 
  can be calculated: 

(sigma2 + tau00 - sigma2_3 - tau00_3) / (sigma2 + tau00) 

[1] 0.3915975 

 ̃   
  can be calculated: 

(tau00 + (sigma2/harmonic.n) - tau00_3 - (sigma2_3/harmonic.n)) / (tau00 + (sigma2/harmonic.n)) 

[1] 0.4840671 

Note that the comparing models should not have any random slopes. If the random slopes exist, all    

listed above are not interpretable because 1)     depends on the centering of the predictors and 2) the 

strength of effect of L1 predictors are variable across groups (leading to different    across groups). 

Proportion of Slope Variance Explained 

Because the slopes of L1 predictors are allowed to vary across L2 units in multilevel models, some 

predictors can be used to explain the variance of slopes. The drop in residual variance can be used to 

calculate the proportion of slope variance explained (    
 ) such that  

    
  

     (  | )
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For example, the proportion of the slope variance explained by the type of school can be calculated by 

comparing Model 8 and Model 6. First, the residual variance of the slope of Model 6 and Model 8 can be 

extracted: 

out6 <- summary(m6) 

ranef6 <- out6@REmat 

tau11r <- as.numeric(ranef6[2, 3]) 

out8 <- summary(m8) 

ranef8 <- out8@REmat 

tau11 <- as.numeric(ranef8[2, 3]) 

    
  can be calculated: 

(tau11 - tau11r) / tau11 

[1] 0.1834728 

Centering 
Sometimes, the IV value of 0 is not meaningful. For example, the standard IQ score of 0 does not exist. 

Therefore, any intercepts based on the standard IQ score are not meaningful, including    ,    , or    . 

Centering the IV can make intercepts meaningful. Both L1 and L2 predictors can be centered but 

centering L1 predictor is more complex and crucial. More importantly, different centering approaches are 

appropriate for different situations. Model 1-10 analyzed above may be not appropriate in some 

situations. 

Centering is simply to subtract an IV by a value. For L1 predictors, the centered value can be grand mean, 

group mean, or any meaningful values. For L2 predictors, the centered value can be grand mean or any 

meaningful values. I start with centering L1 predictors with grand mean and group mean. Then, centering 

at L2 predictors will be illustrated. 

Model 1a: Grand Mean Centering / Centering for Specific Values at L1 Predictors 

This model is similar to Model 1 that the language score is predicted by verbal IQ score. However, the 

verbal IQ is grand-mean centered by subtracting the verbal IQ score by its grand mean. The model would 

be  

L1            (     ̅  )           (   
 ) 

L2             

        

     (     ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 1) 

     = The language score of Student i in School j 

     = The verbal IQ score of Student i in School j 

     = The expected mean of language scores within School j when the verbal IQ score is equal to 

its grand mean, which is also referred to as adjusted mean 
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     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1. In this case, the expected changes across schools are the same. 

     = The expected average language score across all schools when the verbal IQ score is equal 

to its grand mean. 

     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1.  

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the adjusted language score average of School j (when the verbal IQ score 

is its grand mean) from the grand mean of adjusted averages across schools 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score 

To implement the grand mean centering, a new variable is created by subtracting the IQ_verb by its 

grand mean. 

dat$IQ_verb.grandMC <- dat$IQ_verb - mean(dat$IQ_verb) 

Users may save the resulting variable into the same variable (dat$IQ_verb) instead of the new 

variable (dat$IQ_verb.grandMC). I recommend making a new variable so it is easier to go back if 

you need the original values. The model can be run: 

m1a <- lmer(langPOST ~ 1 + IQ_verb.grandMC + (1|schoolnr), data = dat, REML=FALSE) 

summary(m1a) 

Model 1: No Centering Model 1a: Grand Mean Centering 
Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + (1 | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24920 24945 -12456    24912   24917 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  9.8451  3.1377   

 Residual             40.4689  6.3615   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 41.05490    0.24336  168.70 

IQ_verb      2.50745    0.05438   46.11 

 

Correlation of Fixed Effects: 

        (Intr) 

IQ_verb 0.003 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb.grandMC + (1 | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24920 24945 -12456    24912   24917 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  9.8451  3.1377   

 Residual             40.4689  6.3615   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                Estimate Std. Error t value 

(Intercept)     41.16569    0.24338  169.14 

IQ_verb.grandMC  2.50745    0.05438   46.11 

 

Correlation of Fixed Effects: 

            (Intr) 

IQ_vrb.grMC 0.013 

The formula is similar to Model 1 but the centered variable (IQ_verb.grandMC) is included instead. I 

provide the results with both no centering and grand-mean centering. Only     is different across models.
5
 

Note that if users include random slopes into the model,     and     can be different from the results 

without centering. I will let you run it on your own. 

                                                      
5
 The correlation of fixed effects can be different across models but we do not usually interpret it. 
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If users wish to center the verbal IQ scores at some specific value (e.g., 5), users can simply change the 

mean function to a specific value in the code 

dat$IQ_verb.c5 <- dat$IQ_verb - 5 

The interpretation in the model is similar to grand mean centering. The adjusted mean would be 

interpreted as the adjusted mean when verbal IQ score is 5. 

Model 1b: Group Mean Centering at L1 Predictors 

Group mean centering is not simply to subtract a constant (e.g., grand mean or a specific value) from a 

variable. Group mean values, obviously, have different values across groups. Therefore, the properties of 

the group-mean centered variable are different from the no-centered variable. Users may view group 

mean centering as changing L1 predictor to a within-group deviation component. The group mean can be 

added to the model as a L2 predictor representing between-group deviation.  

                     ̅                   (     ̅  ) 
            Total deviation = Between-group deviation + Within-group deviation 

where  

     = The verbal IQ score of Student i in School j 

  ̅   = The average of verbal IQ score across students in School j 

The model would be 

L1            (     ̅  )           (   
 ) 

L2             ̅       

        

     (     ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 1) 

     = The language score of Student i in School j 

     = The average of language score within School j, which is also referred to as unadjusted 

mean 

     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1 controlling for schools (assuming that school membership is known), which is also 

referred to within-group effect.  

     = The expected school average language score when the average school verbal IQ score is 0. 

     = The expected change in school average language score when the school average of verbal 

IQ score increases by 1, which is also referred to between-group effect. 

     = The within-group effect of the verbal IQ score, which is constant across schools 

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the actual unadjusted language score average of School j from the 

predicted language school average (from the mean of verbal IQ score) 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 
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     = The residual variance of the school average language scores across schools controlling for 

the school average verbal IQ score 

To implement the group mean centering, a new variable is created to represent a group mean and then an 

original variable is subtracted by the group mean. 

dat$IQ_verb.groupMean <- ave(dat$IQ_verb, dat$schoolnr) 

dat$IQ_verb.groupMC <- dat$IQ_verb - dat$IQ_verb.groupMean 

The ave function is used to create a variable of group mean where the first argument is the target variable 

and the second argument is the grouping variable. The model can be run: 

m1b <- lmer(langPOST ~ 1 + IQ_verb.groupMC + dat$IQ_verb.groupMean + (1|schoolnr), data = dat, 

REML=FALSE) 

summary(m1b) 

Model 1: No Centering Model 1b: Group Mean Centering 
Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + (1 | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24920 24945 -12456    24912   24917 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  9.8451  3.1377   

 Residual             40.4689  6.3615   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 41.05490    0.24336  168.70 

IQ_verb      2.50745    0.05438   46.11 

 

Correlation of Fixed Effects: 

        (Intr) 

IQ_verb 0.003 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb.groupMC + 

dat$IQ_verb.groupMean + (1 |      schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24899 24930 -12445    24889   24895 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept)  8.7246  2.9537   

 Residual             40.4318  6.3586   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                      Estimate Std. Error t value 

(Intercept)           41.07585    0.23205  177.01 

IQ_verb.groupMC        2.45412    0.05552   44.20 

dat$IQ_verb.groupMean  3.73710    0.25553   14.62 

 

Correlation of Fixed Effects: 

            (Intr) IQ_.MC 

IQ_vrb.grMC 0.000         

dt$IQ_vrb.M 0.011  0.000 

Users may notice that the models are not equivalent. Model fits, fixed effects, and the variances of 

random effects are different. Thus, researchers should use the theory to decide the choices of centering. I 

recommend Enders and Tofighi (2007) for a further reading about centering. Note that users may add or 

not add the group mean (IQ_verb.groupMean) back at the upper level. 

Model 11: Centering Level-2 Predictor 

L2 predictors can be centered at grand mean or a specific value. L2 predictors include natural L2 

predictors (e.g., school type) and the group means from L1 predictors. In this example, language score is 

predicted by verbal IQ scores, which is group-mean centered, and proportion minority in each school. The 

within-group effect of the verbal IQ scores is random across schools. The group mean of verbal IQ scores 

is centered at the grand mean and the proportion minority is centered at 0.50. The model would be  

L1            (     ̅  )           (   
 ) 

L2            ( ̅    ̅  )     (      )      

           ( ̅    ̅  )     (      )      
[
   
   
]  ([

 
 
]  [
   
      

] ) 

These notations should represent  
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     = The language score of Student i in School j 

     = The verbal IQ score of Student i in School j 

  ̅   = The mean of verbal IQ score in School j 

  ̅   = The grand mean of verbal IQ score 

    = The proportion of minority in School j 

     = The unadjusted mean of language score in School j  

     = The within-school effect of verbal IQ score on language score in School j 

     = The expected school average language score when the verbal IQ score equals to its grand 

mean and the proportion minority equals 0.5 

     = The between-school effect of verbal IQ score on language score controlling for the 

proportion minority 

     = The effect of proportion minority on the language score controlling for the verbal IQ score 

     = The expected within-school effect of verbal IQ score on language score when the school 

average verbal IQ score equals the grand mean and the proportion minority equals 0.5. 

     = The change in the within-school effect when the school average verbal IQ score increases 

by 1 controlling for the proportion minority 

     = The change in the within-school effect when the proportion minority increases by 1 

controlling for the school average verbal IQ score  

     = The difference between the actual language score and the predicted language score of 

Student i in School j  

     = The deviation of the actual unadjusted language score average of School j from the 

predicted language school average (from the mean of verbal IQ score and proportion minority) 

     = The deviation of the actual within-group effect of School j from the predicted within-group 

effect (from the mean of verbal IQ score and proportion minority) 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score and proportion minority 

     = The residual variance of the slope of within-group effect of verbal IQ score across schools 

controlling for the school average verbal IQ score and proportion minority 

     = The covariance between the residual of the random intercept and the residual of the random 

slope  

        √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

Following the code from Model 1b, we have IQ_verb.groupMC representing group means 

IQ_verb.groupMC representing verbal IQ centered at the group means. First, the group mean is 

centered at the grand mean: 

dat$IQ_verb.groupMeanC <- dat$IQ_verb.groupMean - mean(dat$IQ_verb.groupMean) 

Next, the proportion minority is centered at 0.50: 

dat$sch_min.grandMC <- dat$sch_min - mean(dat$sch_min) 
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The model can be run: 

m11 <- lmer(langPOST ~ 1 + IQ_verb.groupMC + IQ_verb.groupMeanC + sch_min.grandMC + 

IQ_verb.groupMC*IQ_verb.groupMeanC + IQ_verb.groupMC*sch_min.grandMC + (1 + 

IQ_verb.groupMC|schoolnr), data = dat, REML=FALSE) 

summary(m11) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb.groupMC + IQ_verb.groupMeanC + sch_min.grandMC +      IQ_verb.groupMC * 

IQ_verb.groupMeanC + IQ_verb.groupMC *      sch_min.grandMC + (1 + IQ_verb.groupMC | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24874 24936 -12427    24854   24860 

Random effects: 

 Groups   Name            Variance Std.Dev. Corr    

 schoolnr (Intercept)      8.81638 2.96924          

          IQ_verb.groupMC  0.16638 0.40789  -0.682  

 Residual                 39.67709 6.29898          

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                                   Estimate Std. Error t value 

(Intercept)                        41.23163    0.23295  177.00 

IQ_verb.groupMC                     2.48311    0.06347   39.12 

IQ_verb.groupMeanC                  3.70256    0.27357   13.53 

sch_min.grandMC                    -0.25114    1.82997   -0.14 

IQ_verb.groupMC:IQ_verb.groupMeanC -0.15700    0.07399   -2.12 

IQ_verb.groupMC:sch_min.grandMC    -1.14698    0.43359   -2.65 

 

Correlation of Fixed Effects: 

              (Intr) IQ_verb.grpMC IQ_vrb.grpMnC sc_.MC IQ_.MC:I 

IQ_verb.grpMC -0.277                                             

IQ_vrb.grpMnC  0.047 -0.015                                      

sch_mn.grMC   -0.024  0.008         0.356                        

IQ_.MC:IQ_.   -0.016  0.057        -0.267        -0.107          

IQ_.MC:_.MC    0.009 -0.082        -0.119        -0.312  0.272 

The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb.groupMC + IQ_verb.groupMeanC + sch_min.grandMC  

  + IQ_verb.groupMC*IQ_verb.groupMeanC  

  + IQ_verb.groupMC*sch_min.grandMC  

  + (1 + IQ_verb.groupMC|schoolnr) 

       ( )     (     ̅  )     ( ̅    ̅  )     (      ) 

                (     ̅  )( ̅    ̅  ) 

                (     ̅  )(      ) 

                ( )     (     ̅  )      

Users are encouraged to run the model without centering at L2 predictors. Compare the results with the 

current model. Users will find that only     and     change the values. Other parameters and model fits 

remain the same. 

Testing Interactions 
In multilevel model, two-way interactions can be classified by the level of your predictors: 

1. Both predictors are in L1. In this case, users have an option to make the lower-level interaction to 

be random across L2 units. 

2. Both predictors are in L2. The interaction is fixed across school. 

3. One predictor is in L1 but the other predictor is in L2 (cross-level interaction). This model has 

been discussed in Model 6 already. 

Fixed Effect 

Random Effect 
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The code for modeling interaction in multilevel model is similar to regression analysis. Researchers only 

need to specify the product term in the formula by asterisk, *, or colon, : (as mentioned in Model 6). In 

this section, the examples of each type of interactions will be discussed. After that, the probing interaction 

and testing simple slopes will be discussed. 

Model 12: Lower-level Interaction 

In this model, the language scores (langPOST) is predicted by verbal IQ (IQ_verb) and 

socioeconomic status (ses). Both predictors are expected to have interactive effect on the language 

score. All regression coefficients at level 1 are random across schools. The model with lower-level 

interaction would be  

L1                            (         )           (   
 ) 

L2             

            

            

            

[

   
   
   
    

]   

(

 [

 
 
 
 

]  

[
 
 
 
   
      
         
             ]

 
 
 

)

  

As a good practice, the target variable is specified first and then the moderator is specified. This practice 

will make the interpretation and probing interaction easier. In this case, verbal IQ is a target variable and 

socioeconomic status is a moderator. These notations should represent  

     = The language score of Student i in School j 

      = The verbal IQ score of Student i in School j 

      = The socioeconomic status of Student i in School j 

     = The expected average of language score within School j when the verbal IQ score and 

socioeconomic status are 0. 

     = The expected change in language score when the verbal IQ score of students in School j 

increases by 1 given that the socioeconomic status is 0. It can be referred to as the simple slope of 

verbal IQ score when the socioeconomic status is 0. 

     = The expected change in language score when the socioeconomic status of students in 

School j increases by 1 given that the verbal IQ is 0. It can be referred to as the simple slope of 

socioeconomic status when the verbal IQ is 0. 

     = The change in the effect of verbal IQ scores on language scores when socioeconomic status 

increases by 1 in School j. Also, the change in the effect of socioeconomic status on language 

scores when verbal IQ scores increases by 1 in School j. It can be referred to as the interaction 

effect in School j. 

     = The average language score across all schools when the verbal IQ score and socioeconomic 

status are 0. 

     = The schools’ average expected change in language score when the verbal IQ score increase 

by 1 given that socioeconomic status is 0.  

     = The schools’ average expected change in language score when the socioeconomic status 

increase by 1 given that verbal IQ score is 0.  

     = The average of the interaction effect across schools. 
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     = The difference between the actual language score and the predicted language score of 

Student i in School j. 

     = The deviation of the adjusted language score average of School j (when the verbal IQ score 

and socioeconomic status are 0) from the average of adjusted means across schools 

     = The deviation of the simple slope of verbal IQ score (when socioeconomic status is 0) of 

School j from the average simple slope of verbal IQ score across schools 

     = The deviation of the simple slope of socioeconomic status (when verbal IQ score is 0) of 

School j from the average simple slope of socioeconomic status across schools 

     = The deviation of the interaction effect of School j from the average interaction effect across 

schools  

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score and socioeconomic status 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score and socioeconomic status 

     = The variance of the simple slope of verbal IQ score across schools  

     = The variance of the simple slope of socioeconomic status across schools  

     = The variance of the interaction effect between verbal IQ score and socioeconomic status 

across schools  

     (where    ) = The covariance between     and     

        √      ⁄  (where    ) = The covariance mentioned above in the correlation scale 

(from -1 to 1) 

The model with lower-level interaction can be run by the lmer function: 

m12 <- lmer(langPOST ~ 1 + IQ_verb + ses + IQ_verb*ses + (1 + IQ_verb + ses + 

IQ_verb*ses|schoolnr), data = dat, REML=FALSE) 

summary(m12) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb + ses + IQ_verb * ses + (1 + IQ_verb +      ses + IQ_verb * ses | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24662 24756 -12316    24632   24653 

Random effects: 

 Groups   Name        Variance   Std.Dev. Corr                  

 schoolnr (Intercept) 1.0285e+01 3.206989                       

          IQ_verb     2.0144e-01 0.448817 -0.671                

          ses         2.2252e-04 0.014917  0.464 -0.968         

          IQ_verb:ses 6.4380e-04 0.025373 -0.763  0.031  0.219  

 Residual             3.6978e+01 6.080966                       

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

             Estimate Std. Error t value 

(Intercept) 41.282941   0.249130  165.71 

IQ_verb      2.251518   0.064446   34.94 

ses          0.173129   0.011303   15.32 

IQ_verb:ses -0.021280   0.005119   -4.16 

 

Correlation of Fixed Effects: 

            (Intr) IQ_vrb ses    

IQ_verb     -0.312               

ses          0.070 -0.338        

IQ_verb:ses -0.376  0.045 -0.165 
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Note that all effects at L1 are listed in the parenthesis so all L1 effects are random. The mapping from the 

formula and reduced-form equation would be 

langPOST ~ 1 + IQ_verb + ses + IQ_verb*ses  

  + (1 + IQ_verb + ses + IQ_verb*ses|schoolnr) 

       ( )                     (         ) 

               ( )                     (         )      

The output is similar to the previous models except there are six correlation coefficients between four 

random effects. Similar to previous models, p-value and residual ICC can be computed. In this case, the 

significance of the interaction effect could be directly observed from the p value from the t-statistic. The 

interaction effect was significant (z = -4.16, p < .001). Users can use deviance test to check the 

significance of the interaction effect or the significance of the variance of random interaction effect across 

schools. 

Model 12a: Lower-level Interaction with Group Mean Centering 

(*Readers may skip this section without loss of continuity) Grand mean centering may be not appropriate 

with the lower-level interaction (Enders & Tofighi, 2007). In no centering or grand-mean centering, both 

between- and within-level effect of verbal IQ score and socioeconomic status will be accounted in    , 

   , and    . The between-level effects are constant across schools but the within-level effects are 

random across schools. Because of the constant between-level effect across schools,    ,    , and     can 

be underestimated. Therefore, group-mean centering is more appropriate in lower-level interaction 

although the computation can be much more complex. In this example, all L1 predictors are centered at 

the group means. The group means of both L1 predictors are added back as the L2 predictors with grand 

mean centering. The model would be 

L1            (      ̅   )     (      ̅   ) 

              (      ̅   )  (      ̅   )      

     (   
 ) 

L2            ( ̅     ̅   )     ( ̅     ̅   )      

           ( ̅     ̅   )     ( ̅     ̅   )      

           ( ̅     ̅   )     ( ̅     ̅   )      

           ( ̅     ̅   )     ( ̅     ̅   )      

[

   
   
   
    

]   

(

 [

 
 
 
 

]  

[
 
 
 
   
      
         
             ]

 
 
 

)

  

These notations should represent  

     = The language score of Student i in School j 

      = The verbal IQ score of Student i in School j 

  ̅    = The verbal IQ score average in School j 

  ̅    = The grand mean of verbal IQ score 

      = The socioeconomic status of Student i in School j 

  ̅    = The socioeconomic status average in School j 

  ̅    = The grand mean of socioeconomic status 

     = The unadjusted mean of language score within School j  

     = The within-group effect of verbal IQ score in School j given that the socioeconomic status 

is equal to its group mean. It can be referred to as the simple slope of verbal IQ score when the 

socioeconomic status is equal to its group mean. 

Fixed Effect 

Random Effect 
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     = The within-group effect of socioeconomic status in School j given that the verbal IQ score 

is equal to its group mean. It can be referred to as the simple slope of socioeconomic status when 

the verbal IQ score is equal to its group mean. 

     = The change in the within-group effect of verbal IQ scores when socioeconomic status 

increases by 1 in School j. Also, the change in the within-group effect of socioeconomic status 

when verbal IQ scores increases by 1 in School j. It can be referred to as the interaction of within-

group effect in School j. 

     = The expected language score across all schools when the verbal IQ score and 

socioeconomic status are equal to their grand mean. The value will be equal to the grand mean of 

the language score. 

     = The between-group effect of verbal IQ score controlling for the school mean of 

socioeconomic status 

     = The between-group effect of socioeconomic status controlling for the school mean of verbal 

IQ score 

     = The expected within-group effect of verbal IQ score when the school means of verbal IQ 

score and socioeconomic status are equal to their grand mean. The value will be equal to the 

average of the within-group effect of verbal IQ score across schools. 

     = The increase in the within-group effect of verbal IQ score when the school mean of verbal 

IQ score increases by 1, controlling for the school mean of socioeconomic status 

     = The increase in the within-group effect of verbal IQ score when the school mean of 

socioeconomic status increases by 1, controlling for the school mean of verbal IQ score 

     = The expected within-group effect of socioeconomic status when the school means of verbal 

IQ score and socioeconomic status are equal to their grand mean. The value will be equal to the 

average of the within-group effect of socioeconomic status across schools. 

     = The increase in the within-group effect of socioeconomic status when the school mean of 

verbal IQ score increases by 1, controlling for the school mean of socioeconomic status 

     = The increase in the within-group effect of socioeconomic status when the school mean of 

socioeconomic status increases by 1, controlling for the school mean of verbal IQ score 

     = The expected within-group (lower-level) interaction when school means of verbal IQ scores 

and socioeconomic status equal their grand means. The value will be equal to the average within-

group interaction across schools. 

     = The increase in the lower-level interaction when the school mean of verbal IQ score 

increases by 1, controlling for the school mean of socioeconomic status 

     = The increase in the lower-level interaction when the school mean of socioeconomic status 

increases by 1, controlling for the school mean of verbal IQ score 

     = The difference between the actual language score and the predicted language score of 

Student i in School j. 

     = The deviation of the actual average of language score in School j from the predicted 

language score in School j (from the school values of verbal IQ score and socioeconomic status) 

     = The deviation of the actual within-group effect of verbal IQ score in School j from the 

predicted within-group effect in School j (from the school values of verbal IQ score and 

socioeconomic status) 
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     = The deviation of the actual within-group effect of socioeconomic status in School j from 

the predicted within-group effect in School j (from the school values of verbal IQ score and 

socioeconomic status) 

     = The deviation of the lower-level interaction in School j from the predicted lower-level 

interaction in School j (from the school values of verbal IQ score and socioeconomic status) 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the verbal IQ score and socioeconomic status 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the verbal IQ score and socioeconomic status 

     = The residual variance of the simple within-group slope of verbal IQ score across schools  

     = The residual variance of the simple within-group slope of socioeconomic status across 

schools  

     = The residual variance of the lower-level interaction effect between verbal IQ score and 

socioeconomic status across schools  

     (where    ) = The covariance between     and     

        √      ⁄  (where      0, 1, 2, or 3 and    ) = The covariance mentioned above in the 

correlation scale (from -1 to 1) 

The model with lower-level interaction can be run by the lmer function: 

m12b <- lmer(langPOST ~ 1 + IQ_verb.groupMC + ses.groupMC + IQ_verb.groupMC*ses.groupMC  

+ IQ_verb.groupMeanC + ses.groupMeanC  

+ IQ_verb.groupMC*IQ_verb.groupMeanC + IQ_verb.groupMC*ses.groupMeanC  

+ ses.groupMC*IQ_verb.groupMeanC + ses.groupMC*ses.groupMeanC  

+ IQ_verb.groupMC*ses.groupMC*IQ_verb.groupMeanC*  

+ IQ_verb.groupMC*ses.groupMC*ses.groupMeanC  

+ (1 + IQ_verb.groupMC + ses.groupMC + IQ_verb.groupMC*ses.groupMC|schoolnr),  

data = dat, REML=FALSE) 

summary(m12b) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + IQ_verb.groupMC + ses.groupMC + IQ_verb.groupMC * ses.groupMC  

+ IQ_verb.groupMeanC + ses.groupMeanC  

+ IQ_verb.groupMeanC * IQ_verb.groupMC + ses.groupMeanC * IQ_verb.groupMC  

+ IQ_verb.groupMeanC * ses.groupMC + ses.groupMeanC * ses.groupMC  

+ IQ_verb.groupMeanC * IQ_verb.groupMC * ses.groupMC  

+ ses.groupMeanC * IQ_verb.groupMC * ses.groupMC  

+ (1 + IQ_verb.groupMC + ses.groupMC + IQ_verb.groupMC * ses.groupMC | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 24668 24812 -12311    24622   24694 

Random effects: 

 Groups   Name                        Variance   Std.Dev. Corr                  

 schoolnr (Intercept)                 9.2187e+00 3.036230                       

          IQ_verb.groupMC             2.5328e-01 0.503274 -0.538                

          ses.groupMC                 4.5736e-04 0.021386 -0.060 -0.809         

          IQ_verb.groupMC:ses.groupMC 7.4477e-04 0.027291 -0.482 -0.479  0.903  

 Residual                             3.6827e+01 6.068512                       

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                                                 Estimate Std. Error t value 

(Intercept)                                    41.3228831  0.2374470  174.03 

IQ_verb.groupMC                                 2.2359184  0.0673550   33.20 

ses.groupMC                                     0.1714991  0.0120377   14.25 

IQ_verb.groupMeanC                              3.5087717  0.3094178   11.34 

ses.groupMeanC                                  0.0776109  0.0449142    1.73 

IQ_verb.groupMC:ses.groupMC                    -0.0199923  0.0067104   -2.98 

IQ_verb.groupMC:IQ_verb.groupMeanC             -0.0390839  0.0916282   -0.43 

IQ_verb.groupMC:ses.groupMeanC                 -0.0167653  0.0126505   -1.33 
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ses.groupMC:IQ_verb.groupMeanC                  0.0038817  0.0177408    0.22 

ses.groupMC:ses.groupMeanC                      0.0002484  0.0024205    0.10 

IQ_verb.groupMC:ses.groupMC:IQ_verb.groupMeanC -0.0247756  0.0099071   -2.50 

IQ_verb.groupMC:ses.groupMC:ses.groupMeanC      0.0013683  0.0013992    0.98 

 

(*The output of the correlation between fixed effect is not shown here) The mapping from the formula 

and reduced-form equation would be 

langPOST ~ 1 + IQ_verb.groupMC + ses.groupMC +  

  + IQ_verb.groupMC*ses.groupMC  

  + IQ_verb.groupMeanC + ses.groupMeanC  

  + IQ_verb.groupMC*IQ_verb.groupMeanC  

  + IQ_verb.groupMC*ses.groupMeanC  

  + ses.groupMC*IQ_verb.groupMeanC  

  + ses.groupMC*ses.groupMeanC  

  + IQ_verb.groupMC*ses.groupMC*IQ_verb.groupMeanC  

  + IQ_verb.groupMC*ses.groupMC*ses.groupMeanC 

  + (1 + IQ_verb.groupMC + ses.groupMC +  

   IQ_verb.groupMC*ses.groupMC|schoolnr) 

       ( )     (      ̅   )     (      ̅   ) 

    (      ̅   )  (      ̅   ) 

    ( ̅     ̅   )     ( ̅     ̅   ) 

    (      ̅   )  ( ̅     ̅   ) 

    (      ̅   )  ( ̅     ̅   ) 

    (      ̅   )  ( ̅     ̅   ) 

    (      ̅   )  ( ̅     ̅   ) 

    (      ̅   )  (      ̅   )  ( ̅     ̅   ) 

    (      ̅   )  (      ̅   )  ( ̅     ̅   ) 

    ( )     (      ̅   )     (      ̅   ) 

    (      ̅   )  (      ̅   )      

The results are very complex. The fixed effect involves with three-way interaction such that the lower-

level interaction was moderated by the school means of verbal IQ or socioeconomic status. The average 

lower-level interaction,    , was significant. Furthermore, the lower-level interaction was significantly 

moderated by the school mean of verbal IQ,    . Users should be very careful in interpreting the three-

way interaction.  

Model 13: Upper-level Interaction 

In this model, the language scores (langPOST) is predicted by school average of students’ 

socioeconomic status (sch_ses) and type of schools (denomina). Both predictors are measured at the 

upper level and expected to have interactive effect on the language score. The model with upper-level 

interaction would be  

L1                  (   
 ) 

L2                                           
    (       )     (       )     (       )

    (       )      

     (     ) 

These notations should represent  

Fixed Effect 

Random Effect 
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     = The language score of Student i in School j 

     = The average socioeconomic status across students in School j 

     = A dummy variable whether School j is classified as Type 2 

     = A dummy variable whether School j is classified as Type 3 

     = A dummy variable whether School j is classified as Type 4 

     = A dummy variable whether School j is classified as Type 5 

     = The average of language score across students in School j  

     = The expected language score when the type of schools is 1 and the school’s socioeconomic 

status is 0.  

     = The expected increase in language score if the school’s socioeconomic status increases by 1 

in the type-1 school.  

     = The expected difference in language score between the type-2 school and type-1 school 

when the school’s socioeconomic status is 0.   

     = The expected difference in language score between the type-3 school and type-1 school 

when the school’s socioeconomic status is 0.   

     = The expected difference in language score between the type-4 school and type-1 school 

when the school’s socioeconomic status is 0.   

     = The expected difference in language score between the type-5 school and type-1 school 

when the school’s socioeconomic status is 0.   

     = The change in the effect of the school’s socioeconomic status when type of schools change 

from Type 1 to Type 2. Also, the change in the difference between the type-2 school and type-1 

school when the school’s socioeconomic status increases by 1. 

     = The change in the effect of the school’s socioeconomic status when type of schools change 

from Type 1 to Type 3. Also, the change in the difference between the type-3 school and type-1 

school when the school’s socioeconomic status increases by 1. 

     = The change in the effect of the school’s socioeconomic status when type of schools change 

from Type 1 to Type 4. Also, the change in the difference between the type-4 school and type-1 

school when the school’s socioeconomic status increases by 1. 

     = The change in the effect of the school’s socioeconomic status when type of schools change 

from Type 1 to Type 5. Also, the change in the difference between the type-5 school and type-1 

school when the school’s socioeconomic status increases by 1. 

     = The deviation between the actual language score of Student i of School j from the School j 

average of language score.  

     = The deviation of the mean of actual language score in School j from the predicted language 

score of School j (using school’s socioeconomic status and type of school in prediction). 

    = The language score variance within schools (L1 variance)  

     = The language score residual variance across schools (L2 residual variance) controlling for 

the type of schools and school’s socioeconomic status 

The model with upper-level interaction can be run by the lmer function: 

m13 <- lmer(langPOST ~ 1 + sch_ses + denomina + sch_ses*denomina + (1|schoolnr), data = dat, 

REML=FALSE) 
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summary(m13) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + sch_ses + denomina + +sch_ses * denomina + (1 |      schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 26537 26611 -13256    26513   26520 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 schoolnr (Intercept) 11.037   3.3222   

 Residual             62.822   7.9261   

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

                   Estimate Std. Error t value 

(Intercept)       39.370240   0.500581   78.65 

sch_ses            0.405549   0.070779    5.73 

denomina2          3.561452   0.684965    5.20 

denomina3          1.130100   0.728239    1.55 

denomina4          3.824208   1.692785    2.26 

denomina5          2.076073   1.214670    1.71 

sch_ses:denomina2 -0.106074   0.109058   -0.97 

sch_ses:denomina3 -0.002988   0.114329   -0.03 

sch_ses:denomina4 -0.306565   0.213239   -1.44 

sch_ses:denomina5 -0.055471   0.205669   -0.27 

 

Correlation of Fixed Effects: 

            (Intr) sch_ss denmn2 denmn3 denmn4 denmn5 sch_:2 sch_:3 sch_:4 

sch_ses      0.019                                                         

denomina2   -0.731 -0.014                                                  

denomina3   -0.687 -0.013  0.502                                           

denomina4   -0.296 -0.006  0.216  0.203                                    

denomina5   -0.412 -0.008  0.301  0.283  0.122                             

sch_ss:dnm2 -0.012 -0.649  0.136  0.008  0.004  0.005                      

sch_ss:dnm3 -0.012 -0.619  0.009  0.045  0.003  0.005  0.402               

sch_ss:dnm4 -0.006 -0.332  0.005  0.004 -0.583  0.003  0.215  0.205        

sch_ss:dnm5 -0.006 -0.344  0.005  0.004  0.002 -0.206  0.223  0.213  0.114 

The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + sch_ses + denomina 

  + sch_ses*denomina  

  + (1 + IQ_verb|schoolnr) 

langPOST ~ 1 + sch_ses + d2 + d3 + d4 + d5  

  + sch_ses*d2 + sch_ses*d3 + sch_ses*d4 + sch_ses*d5  

  + (1|schoolnr) 

       ( )                                     

                                                    

               ( )      

Similar to previous models, p-value and residual ICC can be computed. Because the interaction effects 

involve with multiple fixed effects, a deviance test between the models including and not including the 

interaction effects would be helpful for testing interaction. Thus, I made the baseline model that did not 

include the interaction effect and used the anova function to implement the deviance test. 

m13a <- lmer(langPOST ~ 1 + sch_ses + denomina + (1|schoolnr), data = dat, REML=FALSE) 

anova(m13, m13a) 

Data: dat 

Models: 

m13a: langPOST ~ 1 + sch_ses + denomina + (1 | schoolnr) 

m13: langPOST ~ 1 + sch_ses + denomina + sch_ses * denomina + (1 |  

m13:     schoolnr) 

     Df   AIC   BIC logLik  Chisq Chi Df Pr(>Chisq) 

m13a  8 26532 26581 -13258                          

m13  12 26537 26611 -13256 2.8375      4     0.5854 

Fixed Effect 

Random Effect 
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In this case, the interaction effect between school’s average in socioeconomic status and type of school on 

the language scores was not significant, 2
(4) = 2.84, p = .59. 

Model 14: Cross-level Interaction 

In this model, the language scores (langPOST) is predicted by sex (sex) and type of schools 

(denomina). Sex is measured at the lower level but type of schools is measured at the upper level. Both 

predictors are expected to have interactive effect on the language score. Note that this model is very 

similar to Model 6. The only difference is that sex is a categorical variable. The model with cross-level 

interaction would be  

L1                         (   
 ) 

L2                                         

                                        
[
   
   
]  ([

 
 
]  [
   
      

] ) 

These notations should represent  

     = The language score of Student i in School j 

     = A dummy variable whether Student i in School j is classified as female 

     = A dummy variable whether School j is classified as Type 2 

     = A dummy variable whether School j is classified as Type 3 

     = A dummy variable whether School j is classified as Type 4 

     = A dummy variable whether School j is classified as Type 5 

     = The average of language score within School j across males (when sex is 0) 

     = The expected change in language score when the sex changes from 0 to 1, which is the sex 

difference in language score in School j. 

     = The expected male language score across all type-1 schools 

     = The difference in male language score between all schools in Type 2 and all schools in 

Type 1 

     = The difference in male language score between all schools in Type 3 and all schools in 

Type 1 

     = The difference in male language score between all schools in Type 4 and all schools in 

Type 1 

     = The difference in male language score between all schools in Type 5 and all schools in 

Type 1 

     = The expected sex difference in language score across type-1 schools.  

     = The difference between type-2 and type-1 schools in the sex difference in language score 

     = The difference between type-3 and type-1 schools in the sex difference in language score 

     = The difference between type-4 and type-1 schools in the sex difference in language score 

     = The difference between type-5 and type-1 schools in the sex difference in language score 

     = The difference between the actual language score of Student i in School j and the sex-

specific average language score in School j 

     = The deviation of the average male language score of School j from the mean of male 

averages across schools in the same Type that School j is in 



R for Multilevel Models  55 

     = The deviation of the sex difference in language score of School j from the expected 

difference across schools in the same type that School j is in 

    = The language score residual variance within schools (L1 residual variance) controlling for 

the sex 

     = The language score residual variance across schools (L2 residual variance) controlling for 

the sex and the type of schools 

     = The residual variance of the sex difference in language score across schools controlling for 

the type of schools 

     = The covariance between the residual of the random intercept and the residual of the random 

slope  

        √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

To run the analysis in R, initially, the sex variable needs to be transformed into a factor. 

dat$sex <- factor(dat$sex) 

Next, the model with cross-level interaction can be run by the lmer function: 

m14 <- lmer(langPOST ~ 1 + sex + denomina + sex*denomina + (1 + sex|schoolnr), data = dat, 

REML=FALSE) 

summary(m14) 

Linear mixed model fit by maximum likelihood  

Formula: langPOST ~ 1 + sex + denomina + sex * denomina + (1 + sex | schoolnr)  

   Data: dat  

   AIC   BIC logLik deviance REMLdev 

 26516 26603 -13244    26488   26475 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr    

 schoolnr (Intercept) 17.9743  4.2396           

          sex1         3.2988  1.8163   -0.435  

 Residual             60.7440  7.7938           

Number of obs: 3758, groups: schoolnr, 211 

 

Fixed effects: 

               Estimate Std. Error t value 

(Intercept)     38.1934     0.6516   58.61 

sex1             2.2610     0.5579    4.05 

denomina2        3.4008     0.8793    3.87 

denomina3        0.4579     0.9431    0.49 

denomina4        4.6992     1.7087    2.75 

denomina5        3.1020     1.5481    2.00 

sex1:denomina2  -0.4827     0.7407   -0.65 

sex1:denomina3   1.2290     0.8078    1.52 

sex1:denomina4  -0.4698     1.4422   -0.33 

sex1:denomina5  -1.0974     1.2918   -0.85 

 

Correlation of Fixed Effects: 

            (Intr) sex1   denmn2 denmn3 denmn4 denmn5 sx1:d2 sx1:d3 sx1:d4 

sex1        -0.494                                                         

denomina2   -0.741  0.366                                                  

denomina3   -0.691  0.342  0.512                                           

denomina4   -0.381  0.189  0.283  0.263                                    

denomina5   -0.421  0.208  0.312  0.291  0.161                             

sex1:denmn2  0.372 -0.753 -0.493 -0.257 -0.142 -0.157                      

sex1:denmn3  0.341 -0.691 -0.253 -0.488 -0.130 -0.144  0.520               

sex1:denmn4  0.191 -0.387 -0.142 -0.132 -0.472 -0.081  0.291  0.267        

sex1:denmn5  0.214 -0.432 -0.158 -0.148 -0.081 -0.501  0.325  0.298  0.167 

The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + sex + denomina  

  + sex*denomina  
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  + (1 + sex|schoolnr) 

langPOST ~ 1 + sex1 + d2 + d3 + d4 + d5  

  + sex1*d2 + sex1*d3 + sex1*d4 + sex1*d5  

  + (1 + sex1|schoolnr) 

       ( )                                     

                                                    

               ( )             

Because the interaction effect involved multiple fixed effects, I made the baseline model that does not 

include the interaction effect and used the anova function to implement the deviance test. 

m14a <- lmer(langPOST ~ 1 + sex + denomina + (1 + sex|schoolnr), data = dat, REML=FALSE) 

anova(m14, m14a) 

Data: dat 

Models: 

m14a: langPOST ~ 1 + sex + denomina + (1 + sex | schoolnr) 

m14: langPOST ~ 1 + sex + denomina + sex * denomina + (1 + sex | schoolnr) 

     Df   AIC   BIC logLik  Chisq Chi Df Pr(>Chisq) 

m14a 10 26514 26576 -13247                          

m14  14 26516 26603 -13244 6.2886      4     0.1786 

In this case, the interaction effect between student’s sex and type of school on the language scores was 

not significant, 2
(4) = 6.29, p = .18. In this cross-level interaction, users may try group-mean centering 

for the sex variable and investigate the differences between two models. 

Probing Two-Way Interaction 

After any types of interactions are significant, researchers would like to know the meanings behind the 

interactions. In this section, I will show you how to create a helpful plot for probing interactions and how 

to calculate the simple slopes and implement the null hypothesis testing of simple slopes. Also, I will 

show you how to use centering as another method for probing interaction. Note that, in multilevel 

modeling, the methods for probing interaction, testing simple slopes, or centering for probing interactions 

are similar regardless of the (lower or upper) levels of the predictors. Please refer to Bauer and Curran 

(2005) for more details in probing interactions in multilevel modeling. 

Two Continuous Predictors 

There are at least three ways in probing interactions between continuous predictors: 1) use the online 

utility from Kris Preacher’s webpage (http://www.quantpsy.org/interact/index.html; Preacher, Curran, & 

Bauer, 2006), 2) use the rockchalkMultilevel package, and 3) centering. Model 12 with the 

interaction between two continuous predictors is used here. The verbal IQ score is treated as the target 

variable and the socioeconomic status is treated as a moderator.  

Kris Preacher’s Online Utility 

If you go to the website, there are multiple options for probing interaction based on difference types of 

models. Because the multilevel model is used with two-way interaction, choose the link of Simple 

slopes and the region of significance for HLM 2-way interactions. Next, go 

down the page. You will see three java applets representing three interaction cases based on the levels of 

predictors:  

1.   : focal predictor,   : moderator. This case is a lower-level interaction. 

2.   : focal predictor,   : moderator. This case is an upper-level interaction. 

Fixed Effect 

Random Effect 

http://www.quantpsy.org/interact/index.html
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3.   : focal predictor,   : moderator. This case is a cross-level interaction. 

Because Model 12 involves with lower-level interaction, the first case is selected. The Java applet should 

look like the following picture. 

 

Users need to put numbers for those boxes. We will go over how to find the appropriate numbers for these 

boxes. 

1. Regression coefficients are the fixed-effect estimates. If you run summary(m11), you will see 

the fixed-effect output: 

Fixed effects: 

             Estimate Std. Error t value 

(Intercept) 41.282941   0.249130  165.71 

IQ_verb      2.251518   0.064446   34.94 

ses          0.173129   0.011303   15.32 

IQ_verb:ses -0.021280   0.005119   -4.16 

From the applet,  ̂   is the intercept estimate, 41.282941.  ̂   is the regression coefficient of your 

target variable, IQ_verb, which is 2.251518.  ̂   is the regression coefficient from the 

moderator, ses, which is 0.173129.  ̂   is the regression coefficient from the interaction, 

IQ_verb:ses, which is -0.021280. 

2. Degrees of freedom. Because we use Wald statistic (z approximation), we will leave these boxes 

blank. 

3. Coefficient variances. This is simply the squared standard error of each fixed effect. Users may 

calculate the variances from the standard errors by hand. However, it is easier to directly request 

the asymptotic covariance matrix between fixed effects from the output by the vcov function. 

Because the result of the vcov function involves scientific notation, I will use the round 

function (using 10 digits) to make the outputs as numbers: 

round(vcov(m11), 10) 

4 x 4 Matrix of class "dpoMatrix" 

              [,1]          [,2]          [,3]          [,4] 

[1,]  0.0620658219 -0.0050169005  0.0001968993 -0.0004794081 

[2,] -0.0050169005  0.0041532295 -0.0002458554  0.0000148274 

[3,]  0.0001968993 -0.0002458554  0.0001277613 -0.0000095634 

[4,] -0.0004794081  0.0000148274 -0.0000095634  0.0000262045 

The orders of the rows and the columns match with the order of the fixed effects listed above. 

That is, the rows or columns represent  ̂  ,  ̂  ,  ̂  , and  ̂  , respectively. In the coefficient 
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variances boxes, the diagonal elements of the matrix will be used.   ̂   is the variance of the 

intercept estimate, 0.0620658219.  ̂   is the variance of the regression coefficient of your target 

variable, 0.0041532295.  ̂   is the variance of the regression coefficient from the moderator, 

0.0001277613.  ̂   is the variance of the regression coefficient from the interaction, 

0.0000262045. 

4. Coefficient covariance. The covariances represent the off-diagonal elements of the asymptotic 

covariance matrix.  ̂      represents the covariance between  ̂   and  ̂  , which is the element 

[1, 3] of the matrix. The number is 0.0001968993.  ̂      represents the covariance between 

 ̂   and  ̂  , which is the element [2, 4] of the matrix. The number is 0.0000148274.  

5. Conditional values of   . The value of socioeconomic status that users wish to probe. 

Theoretically, the effect of the target variable should be investigated at meaningful levels of a 

moderator. If users do not have theoretical numbers, users may pick  ,     , and      or 

25
th
, 50

th
, and 75

th
 percentile ranks. I will pick the values based on percentile ranks by the 

quantile function: 

quantile(dat$ses) 

    0%    25%    50%    75%   100%  

-17.73  -7.73  -1.73   9.27  22.27 

Then, I will put -7.73, -1.73, and 9.27 for   ( ),   ( ), and   ( ), respectively. 

6. Points to plot. The range of the verbal IQ scores that users wish to see in the plot. I usually use 

the minimum and maximum values, which can be calculated by the range function:
6
 

range(dat$IQ_verb) 

[1] -7.87  6.63 

Therefore, I put -7.87 and 6.63 for   ( ) and   ( ), respectively. 

The filled boxes should look similar to the following picture: 

 

Then, click on Calculate. You will see the outputs listed in three different big boxes below. The first 

box indicates the simple slopes and their significance testing. The second box will show the R code for 

                                                      
6
 Note that, in the applet for cross-level interaction (Case 3), three values are needed for the focal variable. Users 

may simply put the minimum and maximum values for Points 1 and 3. For Point 2, users may put any arbitrary 

values, such as the average of the focal variable. 
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plotting the simple-slope graph. The third box will show the R code for plotting confidence intervals of 

the simple slopes. 

In the first box, we will focus only two parts: region of significance and simple 

intercepts and slopes at conditional values. 

Region of Significance 

======================================================== 

  x2 at lower bound of region = 71.3697 

  x2 at upper bound of region = 201.0655 

  (simple slopes are significant *outside* this region.) 

 

Simple Intercepts and Slopes at Conditional Values 

======================================================== 

  At x2(1)... 

    simple intercept = 39.9447(0.2582), z=154.7175, p=0 

    simple slope     = 2.416(0.0741), z=32.6078, p=0 

  At x2(2)... 

    simple intercept = 40.9834(0.2485), z=164.9037, p=0 

    simple slope     = 2.2883(0.0647), z=35.3926, p=0 

  At x2(3)... 

    simple intercept = 42.8878(0.2769), z=154.8639, p=0 

    simple slope     = 2.0543(0.0817), z=25.1343, p=0 

The region of significance shows the range of moderator values that provides significance results. From 

the output, the simple slopes were not significant if the moderator values were in between 71.37 and 

201.07. The simple slopes are significant if the moderator values were below 71.37 or above 201.07. 

Because all observed values of socioeconomic status were below 71.37, all simple slopes were all 

significant. 

The simple intercept is the expected value of dependent variable when the target variable equals 0 and the 

moderator is equal to the specified values. In this case, the expected values of language scores when 

verbal IQ score was equal to 0 and socioeconomic status was equal to the 25
th
, 50

th
, and 75

th
 percentile 

ranks were 39.94, 40.98, and 42.89, respectively. All simple intercepts were significant. The simple slope 

is the expected change in dependent variable when the target variable increases by 1 at the specified 

values of moderator. In this case, the expected change in language score when verbal IQ score increased 

by 1 at the 25
th
, 50

th
, and 75

th
 percentile ranks were 2.42, 2.29, and 2.05, respectively. That is, when the 

socioeconomic status increased, the effect of verbal IQ score on language score was lower. All simple 

slopes were significant. 

The second box provides the R code for plotting simple slopes. You may hit submit above to 

Rweb or copy the R code and paste in your R program. The graph should be 
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From the graph, the slope of    (verbal IQ) was shallower when    (socioeconomic status) increased.  

The third box provides the R code for the confidence intervals of the simple slopes. Before using this 

code, please make sure to take a look at the first two lines. As a default, you see the following lines: 

z1=-10  #supply lower bound for x2 here 

z2=10   #supply upper bound for x2 here 

That is, the graph assumes that the minimum and maximum values of the moderator are -10 and 10. These 

are not the correct values for the current data. The minimum and maximum values of the socioeconomic 

status can be calculated by the range function, which are -17.73 and 22.27. Then, change the two lines 

above to reflect the range of the current moderator: 

z1=-17.73  #supply lower bound for x2 here 

z2=22.27   #supply upper bound for x2 here 

 Next, you may hit submit above to Rweb or copy the R code and paste in your R program. The 

graph should be 

 



R for Multilevel Models  61 

This graph shows the confidence interval of the simple slope (the effect of verbal IQ on language score) at 

different levels of    (socioeconomic status) on the X axis. 

Using the rockchalkMultilevel package 

If users use the lmer function to get the outputs containing the interaction term (which is what we are 

doing in this paper), the functions in the rockchalkMultilevel package (Pornprasertmanit, 2013) 

can be used to probe interactions. Before installing the package, users need to make sure that they have 

two dependent packages in their computer: rockchalk (Johnson, 2012) and phia (De Rosario-

Martinez, 2012): 

install.packages("rockchalk") 

install.packages("phia") 

After these packages are installed, the rockchalkMultilevel package can be installed from the KU 

repository:
7
 

install.packages("rockchalkMultilevel", repos="http://rweb.quant.ku.edu/kran", type="source") 

As usual, the package needs to be called in the R workspace by using the library function: 

library(rockchalkMultilevel) 

For the interaction between two continuous predictors, the plotSlopes.mlm can be used to visualize 

the simple slopes: 

plotSlopes.mlm(m12, "IQ_verb", "ses") 

                                                      
7
 The rockchalkMultilevel package is a temporary package that I compiled it for this paper. The functions 

inside the packages were modified from the rockchalk and phia packages to work with the output from 

multilevel analysis (specifically the output from the lmer function). If those packages include the multilevel 

feature, I will delete the package. I have conducted a brief test on those functions and found that the output matched 

with the results from the Kris Preacher’s website, the centering approach and the multivariate Wald test. For the 

cases similar to the examples I illustrate in this paper, the output can be trusted. Because I simply modify the 

functions, full credits of these functions should be given to the authors of the rockchalk and phia packages. 
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The first argument is the output from the lmer function. The second argument is the target variable. The 

third argument is the moderator. This graph is similar to the graphs provided from the online applet. The 

default values of moderators are its 25
th
, 50

th
, and 75

th
 percentile ranks. If users wish to have different 

values, the modxVals argument can be used: 

plotSlopes.mlm(m12, "IQ_verb", "ses", modxVals = c(-10, -5, 0, 5, 10)) 

Next, the simple slopes of each value of the moderator can be investigated and tested for significance by 

the testSlopes.mlm function. First, the output from the plotSlopes.mlm is saved as an object: 

simpleSlope12 <- plotSlopes.mlm(m12, "IQ_verb", "ses") 

Then, the testSlopes.mlm function is implemented on the saved object: 

testSlopes.mlm(simpleSlope12) 

These are the straight-line "simple slopes" of the variable IQ_verb   

 for the selected moderator values.  

    "ses"    slope Std. Error  z value      Pr(>|z|) 

25% -7.73 2.416010 0.07409312 32.60775 3.184950e-233 

50% -1.73 2.288332 0.06465566 35.39260 2.219387e-274 

75%  9.27 2.054255 0.08173100 25.13434 2.096100e-139 

Values of modx OUTSIDE this interval: 

       lo        hi  

 71.37318 201.05039  

cause the slope of (b1 + b2modx)plotx to be statistically significant 

This function does not list the simple intercept. The simple slope here matched with the result from the 

online utility. That is, the expected change in language score when verbal IQ score increased by 1 at the 

25
th
, 50

th
, and 75

th
 percentile ranks of socioeconomic status were 2.42, 2.29, and 2.05, respectively. All 

simple slopes were significant. The second portion of the output is the region of moderator values 
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providing significant simple slopes. If the moderator values were in between 71.37 to 201.05, the simple 

slopes were not significant. The output was accompanied by the graph: 

 

The area of X axis in the red horizontal line provided significant slopes. 

Centering 

The regression coefficients of the main effects are the effect of one variable (target variable) given that 

another variable (moderator) is 0. Therefore, if we center a moderator variable at a specific value, the 

regression coefficient will represent the effect of target variable given a specific value of moderator. For 

example, researchers wish to know the simple slope of verbal IQ score given the socioeconomic status 

level of 9.27. The centering can be implemented on the SES variable (moderator) and the centered 

variable is used in the model. 

dat$ses.c <- dat$ses - 9.27 

m12c <- lmer(langPOST ~ 1 + IQ_verb + ses.c + IQ_verb*ses.c + (1 + IQ_verb + ses.c + 

IQ_verb*ses.c|schoolnr), data = dat, REML=FALSE) 

summary(m12c) 

Fixed effects: 

              Estimate Std. Error t value 

(Intercept)   42.90128    0.27948  153.50 

IQ_verb        2.05171    0.08419   24.37 

ses.c          0.17445    0.01177   14.83 

IQ_verb:ses.c -0.02136    0.00528   -4.05 

The fixed effects are only shown here. You may notice that the slope of verbal IQ score is 2.052, which is 

significant. This value represents the effect of verbal IQ score given the socioeconomic status level of 

9.27. Researchers can use this technique to investigate the effect of socioeconomic status given the level 

of verbal IQ score. 

One Continuous Predictor and One Categorical Predictor 

Model 13 is used here. The school’s average in socioeconomic status is treated as the target variable and 

the type of schools is treated as a moderator. Note that the probing interaction is implemented here for 

illustration although the interaction effect was not significant. The three methods for probing the 
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interaction between two continuous predictors are applicable for the interactions between one continuous 

predictor and one categorical variable. The online utility was limited to only dichotomous variable so I 

will illustrate the method in the rockchalkMultilevel package and centering only.  

Using the rockchalkMultilevel package 

Similarly, the plotSlopes.mlm can be used to visualize the simple slopes. In this function, the 

continuous variable must be always used as the target variable and the categorical variable must be 

always used as the moderator: 

plotSlopes.mlm(m13, "sch_ses", "denomina") 

 

Next, the simple slopes of each type of schools can be tested by the testSlopes.mlm function using 

the similar step mentioned previously. 

simpleSlope13 <- plotSlopes.mlm(m12, "sch_ses", "denomina") 

testSlopes.mlm(simpleSlope13) 

These are the straight-line "simple slopes" of the variable sch_ses   

 for the selected moderator values.  

         "denomina"      slope Std. Error   z value     Pr(>|z|) 

1           sch_ses 0.40554906 0.07077942 5.7297598 1.005729e-08 

2 sch_ses:denomina2 0.29947471 0.08296936 3.6094615 3.068333e-04 

3 sch_ses:denomina3 0.40256152 0.08978574 4.4835798 7.340114e-06 

4 sch_ses:denomina4 0.09898413 0.20114918 0.4920931 6.226535e-01 

5 sch_ses:denomina5 0.35007785 0.19310583 1.8128807 6.985022e-02 

The simple slopes for schools of Type 1, 2, and 3 were significant whereas the simple slopes for schools 

of Type 4 and 5 were not significant. Users may notice that the simple slope in type-5 school was strong 

but the slope was not significant. The reason is that the number of schools classified as Type 5 was low. 

Several steps can be used to get the number of schools in each type. First, use the table function to create 

a crosstab between school type and school ID: 
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ctab <- table(dat$schoolnr, dat$denomina) 

If users run the ctab object, users will see the table of school type and school ID where each cell 

represents the number of students. Next, we will check which cell is greater than 0. 

typeschool <- ctab > 0 

The typeschool object is a table indicating the type of each school. Finally, the apply function is 

used to sum the number of schools classified as TRUE in each column: 

apply(typeschool, 2, sum) 

 1  2  3  4  5  

61 72 55 10 13 

The apply function is used to apply the sum function at each column vector (the second argument is 2 

which means columns) on the typeschool object. The numbers of schools in Types 1 and 2 were high 

leading to higher power in simple slopes significance testing. The numbers of schools in Type 4 and 5 

were low, however, leading to lower power in simple slopes significance testing. Note that the moderator 

is a categorical variable so the region of moderator values giving significance simple slopes is not 

provided. 

Centering 

By centering approach, users may select either the continuous variable or the grouping variable as a 

moderator. When the grouping variable is a moderator, the regression coefficient of the main effect of the 

continuous variable represents the effect at the reference group. Therefore, the reference group of the 

grouping variable can be simply changed. Then, the regression coefficient of the target variable will 

represent the effect at the new reference group. To change the reference group, the relevel function 

can be used: 

dat$denomina.c <- relevel(dat$denomina, "2") 

The first argument is a factor variable. The second argument is the name of the reference group. In this 

case, School type 2 is used as the reference group. The model can be rerun by the centered variable: 

m13c <- lmer(langPOST ~ 1 + sch_ses + denomina.c + sch_ses*denomina.c + (1|schoolnr), data = dat, 

REML=FALSE) 

summary(m13c) 

Fixed effects: 

                    Estimate Std. Error t value 

(Intercept)         42.93169    0.46754   91.82 

sch_ses              0.29947    0.08297    3.61 

denomina.c1         -3.56145    0.68497   -5.20 

denomina.c3         -2.43135    0.70594   -3.44 

denomina.c4          0.26276    1.68331    0.16 

denomina.c5         -1.48538    1.20143   -1.24 

sch_ses:denomina.c1  0.10607    0.10906    0.97 

sch_ses:denomina.c3  0.10309    0.12225    0.84 

sch_ses:denomina.c4 -0.20049    0.21759   -0.92 

sch_ses:denomina.c5  0.05060    0.21018    0.24 

The fixed effects are only shown here. You may notice that the slope of verbal IQ score is 0.30, which is 

significant. This value represents the effect of verbal IQ score at the school type 2.  
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When a continuous variable is picked as a moderator, the regression coefficients of the dummy variables 

are interpreted as the effects when the continuous predictor is 0. The continuous can be centered at a 

specific value so that the regression coefficients of the dummy variables representing the effects at the 

given value. For example, the effects of type of schools when the socioeconomic status is 5 can be 

calculated:  

dat$sch_ses.c5 <- dat$sch_ses - 5 

m13d <- lmer(langPOST ~ 1 + sch_ses.c5 + denomina + sch_ses.c5*denomina + (1|schoolnr), data = 

dat, REML=FALSE) 

summary(m13d) 

Fixed effects: 

                      Estimate Std. Error t value 

(Intercept)          41.397986   0.618462   66.94 

sch_ses.c5            0.405549   0.070779    5.73 

denomina2             3.031080   0.931781    3.25 

denomina3             1.115163   0.945772    1.18 

denomina4             2.291383   1.378197    1.66 

denomina5             1.798717   1.421093    1.27 

sch_ses.c5:denomina2 -0.106074   0.109058   -0.97 

sch_ses.c5:denomina3 -0.002988   0.114329   -0.03 

sch_ses.c5:denomina4 -0.306565   0.213239   -1.44 

sch_ses.c5:denomina5 -0.055471   0.205669   -0.27 

The fixed effects are only shown here. The main effects of the dummy variables are used here. For 

example, the difference between school type-2 and type-1 (denomina2) when socioeconomic status was 

5 was 3.03, which was significant.
8
 

Two Categorical Predictors 

Model 14 is used here. The student’s sex and type of schools are used to predict language scores. Note 

that the probing interaction is implemented here for illustration although the interaction effect was not 

significant. With the interaction between two categorical variables, the situation is similar to two-way 

factorial analysis of variance. If the interaction is significant, the simple main effect is used.
9
 The simple 

main effect tests whether the effect of one predictor is significant given different levels of another 

predictor.  

The online utility does not work in this case (except the interaction between two dummy variables). Users 

may use the rockchalkMultilevel package or the centering approach, which will be mentioned 

later. The interactionMeans.mlm can be used to see the expected (or adjusted) means of each 

condition: 

interactionMeans.mlm(m14) 

   sex denomina adjusted mean 

1    0        1      38.19341 

2    1        1      40.45440 

3    0        2      41.59424 

4    1        2      43.37249 

5    0        3      38.65132 

6    1        3      42.14131 

7    0        4      42.89258 

                                                      
8
 If users wish to test whether all types of schools are significantly different at a given level of the school SES, 

further steps are needed after the centering. One way is to use the multivariate Wald test. Check the wald.mlm 

function in the rockchalkMultilevel package to see an example: ?wald.mlm 
9
 Simple main effects are conceptually similar to simple slopes. However, simple main effects are designed to have 

an output layout appropriate for categorical variables. 
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8    1        4      44.68382 

9    0        5      41.29540 

10   1        5      42.45902 

The plot function can be directly applied to the expected means of each condition: 

plot(interactionMeans.mlm(m14)) 

 

The on-diagonal graphs represent the expected means of each group in each factor. The off-diagonal 

graphs represent the interaction effects.  

In testing simple main effect, one factor is selected as a target variable and another factor is selected as 

moderator. For example, the sex differences in each type of schools are investigated. The 

testInteractions.mlm function can be used for the simple main effect testing. 

testInteractions.mlm(m14, fixed="denomina", across="sex", adjustment = "none") 

Chisq Test:  

P-value adjustment method: none 

    Value Df   Chisq Pr(> Chisq)     

1 -2.2610  1 16.4252   5.061e-05 *** 

2 -1.7783  1 13.3168    0.000263 *** 

3 -3.4900  1 35.6903   2.313e-09 *** 

4 -1.7912  1  1.8142    0.178008     

5 -1.1636  1  0.9974    0.317929     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The first argument is the output from the lmer function. The second argument, fixed, is the moderator 

variable. The third argument, across, is the target variable that users wish to test for the difference. The 

fourth argument, adjustment, is the method for correcting for familywise error rate. If the 

adjustment argument is specified as "none", no p-value correction is implemented. Users may 

specify "bonferroni" or "holm" (or other methods listed in the help page). I recommend Howell 

(2007) for the details of each type of familywise-error-rate corrections. In the output, the chi-square tests 
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for the schools type 1, 2, or 3 were significant whereas the chi-square tests in the schools type 4 and 5 

were not significant (because lower power from lower number of schools in these groups).
10

  

The type of schools differences in each group of sex can be investigated as well: 

testInteractions.mlm(m14, fixed="sex", across="denomina", adjustment = "bonferroni") 

Chisq Test:  

P-value adjustment method: bonferroni 

  denomina1 denomina2 denomina3 denomina4 Df  Chisq Pr(> Chisq)     

0   -3.1020   0.29884  -2.64408    1.5972  4 23.025   0.0002504 *** 

1   -2.0046   0.91347  -0.31771    2.2248  4 15.360   0.0080216 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The Bonferroni adjustment was used. In the output, the denomina1, denomina2, denomina3, and 

denomina4 represent the mean of that group (1, 2, 3, or 4) compared with the last group (type = 5). 

Note that the effects of school types within each sex were significant after the Bonferroni adjustment. 

Because the denomina variable has more than two groups, users may wish to implement post-hoc 

pairwise comparison. Users can simply specify the pairwise argument in the 

testInteractions.mlm function: 

testInteractions.mlm(m14, fixed="sex", pairwise="denomina", adjustment = "holm") 

Chisq Test:  

P-value adjustment method: holm 

          Value Df   Chisq Pr(> Chisq)    

1-2 : 0 -3.4008  1 14.9584    0.002198 ** 

1-3 : 0 -0.4579  1  0.2358    1.000000    

1-4 : 0 -4.6992  1  7.5629    0.101290    

1-5 : 0 -3.1020  1  4.0151    0.631317    

2-3 : 0  2.9429  1 10.6488    0.019826 *  

2-4 : 0 -1.2983  1  0.5928    1.000000    

2-5 : 0  0.2988  1  0.0385    1.000000    

3-4 : 0 -4.2413  1  6.0773    0.205399    

3-5 : 0 -2.6441  1  2.8692    1.000000    

4-5 : 0  1.5972  1  0.5711    1.000000    

1-2 : 1 -2.9181  1 12.5384    0.007575 ** 

1-3 : 1 -1.6869  1  3.5638    0.767678    

1-4 : 1 -4.2294  1  6.6929    0.154879    

1-5 : 1 -2.0046  1  1.9477    1.000000    

2-3 : 1  1.2312  1  2.0911    1.000000    

2-4 : 1 -1.3113  1  0.6616    1.000000    

2-5 : 1  0.9135  1  0.4194    1.000000    

3-4 : 1 -2.5425  1  2.3780    1.000000    

3-5 : 1 -0.3177  1  0.0479    1.000000    

4-5 : 1  2.2248  1  1.2427    1.000000    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The Holm method was used for controlling familywise error rate. In this code, the across argument was 

substituted by the pairwise argument. Notice that schools type 1 and type 2 were significantly 

different in the language scores regardless of sex. 

Researchers may use centering approach to probe the simple main effect by the relevel function. 

However, the regression coefficients are not directly interpretable for any variables with more than two 

categories. I found that the simple main effect was much simpler than the centering so I do not discuss the 

centering approach here. 

                                                      
10

 The last group of the sex variable ("1") is used as the reference group in this function. That is why the Value 

column has different signs from the summary of the result. 
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Growth Curve Model 
In the following sections, we will use different data sets. Users may import the data by the following 

script: 

long <- read.csv("C:/Users/student/Desktop/mathgrowth.csv", header = TRUE, na.strings="-999999") 

Because the data have missing observations, we need to specify which values represent missing 

observations in the na.strings argument. In the data, -999999 is used to represent missing 

observations. After the data are imported, the missing observations will be represented as NA in the long 

object. 

Model 15: Linear Trajectory 

In this model, the change of math achievement scores (mathach) across grade (grade) is modeled. 

Measurements are nested in students (caseid). Note that the schools are ignored here. We will take the 

schools into account in the three-level model section. 

The grade variable is ranged from Grade 7 to 12. To make the intercept (   ) interpretable, the grade 

variable is centered at Grade 7: 

long$gradec <- long$grade – 7 

By this centering, the intercept will represent the math achievement of each student at Grade 7. The 

intercepts and slopes (linear change) are random across students. The model of linear trajectory would be  

L1            (     )           (   
 ) 

L2             

            
[
   
   
]  ([

 
 
]  [
   
      

] ) 

These notations should represent  

     = The math achievement score of Measurement i in Student j 

     = The grade that the Measurement i in Student j was observed 

     = The math achievement score of Student j at Grade 7 

     = The expected change in math achievement score when grade increases by 1 for Student j, 

which is the rate of change for Student j 

     = The average of math achievement scores in Grade 7 across students 

     = The average rate of change in math achievement scores across students 

     = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j at a given grade level  

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students 

     = The deviation of the rate of change of Student j from the average rate of change across 

students  

    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

     = The variance of math achievement scores at Grade 7 across students  
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     = The variance of the rate of change in math achievement score across students 

     = The covariance between the math achievement score at Grade 7 (initial status) and the rate 

of change  

        √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

Next, the model with linear trajectory can be run by the lmer function: 

m15 <- lmer(mathach ~ 1 + gradec + (1 + gradec|caseid), data=long, REML=FALSE) 

summary(m15) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + (1 + gradec | caseid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 130778 130825 -65383   130766  130773 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr   

 caseid   (Intercept) 90.7239  9.5249          

          gradec       2.3968  1.5482   0.315  

 Residual             20.5660  4.5350          

Number of obs: 19041, groups: caseid, 5858 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 50.80376    0.15039   337.8 

gradec       3.39160    0.03529    96.1 

 

Correlation of Fixed Effects: 

       (Intr) 

gradec -0.248 

The mapping from the formula and reduced-form equation would be 

mathach ~ 1 + gradec + (1 + gradec|caseid) 

       ( )     (     )     ( )     (     )      
      

      

 Fixed Effect           +             Random Effect 

The random effect of the slope (rate of change) can be tested by making the reference model without the 

random slope and comparing the reference model with Model 15 by deviance test: 

m15a <- lmer(mathach ~ 1 + gradec + (1|caseid), data=long, REML=FALSE) 

anova(m15a, m15) 

Data: long 

Models: 

m15a: mathach ~ 1 + gradec + (1 | caseid) 

m15: mathach ~ 1 + gradec + (1 + gradec | caseid) 

     Df    AIC    BIC logLik  Chisq Chi Df Pr(>Chisq)     

m15a  4 132448 132480 -66220                              

m15   6 130778 130825 -65383 1674.6      2  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Students had different rates of change because the deviance test was significant, 2
(2) = 1674.6, p < .001. 

From the output of Model 15, students increased the math achievement scores by 3.39 points per grade. 

The rate of increases was different across students. In additional to the numeric output, a plot of 

individual trajectories would be helpful. We will use the ggplot2 package to make the plot of 

individual trajectories, which, sometimes, is referred to as spaghetti plot. 

library(ggplot2) 
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The plot of individual trajectories can be made: 

ggplot(long, aes(x = gradec, y = mathach, group=caseid)) + geom_line() 

 

The framework of the ggplot2 package is to build a template of graphic object by the ggplot function 

first and then add other components by the + sign. The template built by the ggplot function has two 

arguments. The first argument is the target dataset. The second argument is the list of attributes in the plot 

wrapped by the aes function. In this list, x is the variable on the x-axis, y is the variable on the y-axis, 

group represents the variable used for making separate lines. The template is added by the geom_line 

function, which is used to draw a line between individual data points in each group. 

The graph above has too many lines. Let’s make the plot for only first 100 students. A new data set of 100 

students can be made: 

long1 <- long[1:(6*100),] 

The first 600 rows (6 time points × 100 students) are selected. The ggplot function can be run again on 

the new data set. 

ggplot(long1, aes(x = gradec, y = mathach, group=caseid)) + geom_line() 
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You may see the increasing trend from the graph. Users may wish to plot the linear trends of individual 

observations instead of the connecting lines between points. The plot of linear trajectories can be made by 

using the geom_smooth function: 

ggplot(long1, aes(x = gradec, y = mathach, group=caseid)) + geom_smooth(method=lm, se=FALSE) 

 

The geom_smooth function has two arguments. The first argument, method, is the function used to 

make each trajectory. The predicted values from the lm function will be used to make each trajectory. 

The second argument, se, is whether to plot the confidence band. Because we have many trajectories 
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already, adding confidence bands will be not helpful. Note that you may see that most students have 

increasing trends where not many students have decreasing trends.
11

 

Users may want to plot individual trajectories in different plots. Let’s make 9 different plots for the first 9 

students’ trajectories. Initially, a data set of 9 students can be created: 

long2 <- long[1:(6*9),] 

Then, the plots can be created 

ggplot(long2, aes(x = gradec, y = mathach)) + facet_wrap(~caseid) + geom_point() + 

geom_smooth(method=lm, se=TRUE) 

 

Within the template, the group argument in the aes function is not specified anymore because we want 

different plots (instead of different lines) for different students. Instead, the facet_wrap function is 

used to make different plots. The argument of the facet_wrap function is the grouping variable. The 

                                                      
11

 The regression coefficients obtained from the lm function (used to create linear trajectories) and the predicted 

value of the slope of each individual,    , can be different. Multilevel model estimates the slope of each individual 

by using both math achievement scores of each student (information from Level 1) and the predicted value of the 

slope across student (information from L2). If a student has more measurements of math achievement, the combined 

slope will be leaning toward the information from Level 1 more. This concept can be referred to as Bayesian 

estimators (Raudenbush & Byrk, 2002). I use the lm function here to simply see the trend of the individual changes, 

not to find accurate rate of change of each student.  
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variable must begin with tilde, ~. The geom_point function is used to plot points in each graph. The 

geom_smooth function is used to plot a linear line in each graph with a confidence band (se = 

TRUE). 

Model 16: Quadratic Trajectory 

In this model, the change of math achievement scores (mathach) across grade (grade) is modeled as a 

quadratic trend. Grade is centered at Grade 7. The model of quadratic trajectory would be  

L1            (     )     (     )
 
     

     (   
 ) 

L2             

            

            
[

   
   
   
]  ([

 
 
 
]  [
   
      
          

] ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 15) 

     = The math achievement score of Measurement i in Student j 

     = The grade that the Measurement i in Student j was observed 

     = The math achievement score of Student j at Grade 7 

     = The linear change (slope) in math achievement score for Student j at Grade 7 

     = The change in linear slope of math achievement score for Student j when grade increases 

by 1, which is the curvature of the change for Student j 

     = The average of math achievement score in Grade 7 across students 

     = The average linear change (slope) in math achievement scores at Grade 7 across students 

     = The average curvature of the change of math achievement scores across students 

     = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j at a given grade level  

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students 

     = The deviation of the linear slope at Grade 7 of Student j from the average linear slope at 

Grade 7 across students  

     = The deviation of the curvature of the change for Student j from the average curvature of the 

change across students 

    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

     = The variance of math achievement score at Grade 7 across students  

     = The variance of the linear slopes in math achievement score at Grade 7 across students 

     = The variance of the curvature of the change across students 

     = The covariance between the math achievement scores at Grade 7 (initial status) and the 

linear changes at Grade 7 

     = The covariance between the math achievement scores at Grade 7 (initial status) and the 

curvatures of the change 

     = The covariance between the linear changes at Grade 7 and the curvatures of the change 



R for Multilevel Models  75 

        √      ⁄  (where      0, 1, or 2 and    ) = The covariance mentioned above in the 

correlation scale (from -1 to 1) 

Next, the model with quadratic trajectory can be run by the lmer function: 

m16 <- lmer(mathach ~ 1 + gradec + I(gradec^2) + (1 + gradec + I(gradec^2)|caseid), data=long, 

REML=FALSE) 

summary(m16) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + I(gradec^2) + (1 + gradec + I(gradec^2) |      caseid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 130190 130269 -65085   130170  130184 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr           

 caseid   (Intercept) 80.37148 8.96501                 

          gradec       9.05050 3.00841   0.394         

          I(gradec^2)  0.20704 0.45501  -0.352 -0.855  

 Residual             18.09922 4.25432                 

Number of obs: 19041, groups: caseid, 5858 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 49.89783    0.15120   330.0 

gradec       4.57557    0.08503    53.8 

I(gradec^2) -0.23520    0.01555   -15.1 

 

Correlation of Fixed Effects: 

            (Intr) gradec 

gradec      -0.285        

I(gradec^2)  0.203 -0.912 

In the formula, the gradec variable is squared representing the quadratic term. However, if the 

gradec^2 is simply put in the formula, R will evaluate the expression first (before feeding in the 

function) and the error will occur. Alternatively, we want R to evaluate the expression inside the function 

so the I function is needed to bracket the squared term to make R hold the expression and evaluate inside 

the function. The quadratic term, I(gradec^2), is added in both fixed effect and random effect.  

The mapping from the formula and reduced-form equation would be 

mathach ~ 1 + gradec + I(gradec^2) + (1 + gradec + I(gradec^2)|caseid) 

       ( )     (     )     (     )
 
    ( )     (     )     (     )

 
     

      

      

    Fixed Effect                           +                              Random Effect 

In adding the quadratic term, we can test whether the curvature of the change is different from 0 on 

average and whether the curvature of the change is random across students. For the first test, the reference 

model with a fixed curvature is created and then compared with the model with the linear model, Model 

15: 

m16a <- lmer(mathach ~ 1 + gradec + I(gradec^2) + (1 + gradec|caseid), data=long, REML=FALSE) 

anova(m15, m16a) 

Data: long 

Models: 

m15: mathach ~ 1 + gradec + (1 + gradec | caseid) 

m16a: mathach ~ 1 + gradec + I(gradec^2) + (1 + gradec | caseid) 

     Df    AIC    BIC logLik  Chisq Chi Df Pr(>Chisq)     

m15   6 130778 130825 -65383                              

m16a  7 130445 130500 -65215 335.32      1  < 2.2e-16 *** 
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Note that the reference model does not have the quadratic term in the random effect (in parenthesis) part. 

Adding the fixed curvature explained the model better than the model with linear trend, 2
(1) = 335.32, p 

< .001. The reference model with the fixed curvature can be compared with the current model, Model 16, 

which has random curvatures: 

anova(m16a, m16) 

Data: long 

Models: 

m16a: mathach ~ 1 + gradec + I(gradec^2) + (1 + gradec | caseid) 

m16: mathach ~ 1 + gradec + I(gradec^2) + (1 + gradec + I(gradec^2) |  

m16:     caseid) 

     Df    AIC    BIC logLik  Chisq Chi Df Pr(>Chisq)     

m16a  7 130445 130500 -65215                              

m16  10 130190 130269 -65085 260.28      3  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Because the test statistic was significant, 2
(1) = 260.28, p < .001, the curvature of the change was 

random across students. Users may compare Model 15 and Model 16 directly (please imagine what does 

this deviance test represent). We can use the ggplot2 package to investigate the quadratic changes of 

the students. Note that we will use the subsets of the whole data set (long1 and long2) that we created 

in Model 15. First, the changes can be plotted in a single graph: 

ggplot(long1, aes(x = gradec, y = mathach, group=caseid)) + geom_smooth(method = "lm", formula = 

y ~ x + I(x^2), se=FALSE) 

 

The code is similar to plotting linear trend in Model 15; however, the formula argument is added in the 

geom_smooth function. The formula has the squared term, I(x^2), to represent a quadratic change. 

We used x and y in the formula (instead of gradec and mathach) because x and y were defined in the 

graph template from the ggplot function. The graph showed that some students have a concaving-up 

change where other students have a concaving-down change. 
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The formula argument can be specified in the geom_smooth function when plotting individual 

changes: 

ggplot(long2, aes(x = gradec, y = mathach)) + facet_wrap(~caseid) + geom_point() + 

geom_smooth(method = "lm", formula = y ~ x + I(x^2), se=TRUE) 

 

Note that standard errors cannot be calculated when a student has only three observations. A quadratic 

trend will fit the data with three observations perfectly. 

Model 17: Linear Trajectory with Time-Invariant Covariate 

In this model, similar to Model 15, the linear change of math achievement scores (mathach) across 

grade (grade) is modeled. The grade variable is centered at Grade 7 so the intercept will represent the 

math achievement of each student at Grade 7. The intercepts and slopes (linear change) are random across 

students and predicted by gender (females as the reference group), which is a time-invariant covariate. 

The model of linear trajectory with time-invariant covariate would be  

L1            (     )           (   
 ) 

L2                   

                  
[
   
   
]  ([

 
 
]  [
   
      

] ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 15) 

     = The math achievement score of Measurement i in Student j 

     = The grade that the Measurement i in Student j was observed 

     = The math achievement score of Student j at Grade 7 

     = The expected change in math achievement score when grade increases by 1 for Student j, 

which is the rate of change for Student j 

     = The average of math achievement scores in Grade 7 across female students 
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     = The difference of the average math achievement scores in Grade 7 between male and 

female students 

     = The average rate of change in math achievement score across female students 

     = The difference of the average rate of change in math achievement scores between male and 

female students 

     = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j at a given grade level  

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students with the same sex as Student j 

     = The deviation of the rate of change of Student j from the average rate of change across 

students with the same sex as Student j 

    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

     = The residual variance of math achievement score at Grade 7 across students controlling for 

sex 

     = The residual variance of the rate of change in math achievement score across students 

controlling for sex 

     = The residual covariance between the math achievement score at Grade 7 (initial status) and 

the rate of change controlling for sex 

        √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

Before running the model, we need to transform the gender variable into the factor format: 

long$gender <- factor(long$gender, labels=c("female", "male")) 

Next, the model of linear trajectory with time-invariant covariate can be run by the lmer function: 

m17 <- lmer(mathach ~ 1 + gradec + gender + gradec*gender + (1 + gradec|caseid), data=long, 

REML=FALSE) 

summary(m17) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + gender + gradec * gender + (1 + gradec |      caseid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 130755 130817 -65369   130739  130750 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr   

 caseid   (Intercept) 90.3056  9.5029          

          gradec       2.3717  1.5400   0.322  

 Residual             20.5786  4.5364          

Number of obs: 19041, groups: caseid, 5858 

 

Fixed effects: 

                  Estimate Std. Error t value 

(Intercept)       51.32442    0.21464  239.12 

gradec             3.22606    0.04976   64.83 

gendermale        -1.02010    0.30019   -3.40 

gradec:gendermale  0.32983    0.07038    4.69 

 

Correlation of Fixed Effects: 

            (Intr) gradec gndrml 

gradec      -0.248               

gendermale  -0.715  0.177        

grdc:gndrml  0.175 -0.707 -0.246 

The mapping from the formula and reduced-form equation would be 



R for Multilevel Models  79 

mathach ~ 1 + gradec + gender + gradec*gender + (1 + gradec|caseid) 

       ( )     (     )           (     )      ( )     (     )      
      

      

                             Fixed Effect                        +                         Random Effect 

The effect of sex on both random intercept and random slope can be tested simultaneously by comparing 

the current model with Model 15 by the deviance test. Using the anova function, the test was significant, 

2
(2) = 27.24, p < .001. From the fixed effects, male students had significantly lower math achievement 

scores than females in Grade 7. Male students, however, had significantly higher rate of increase in math 

achievement than females. To probe the rate of change in each gender, we probe the cross-level 

interaction (gradec*gender), which relates with one continuous variable (gradec) and one 

categorical variable (gender). We can use the rockchalkMultilevel package to probe the 

interaction as explained above: 

simpleSlope17 <- plotSlopes.mlm(m17, "gradec", "gender") 

 

testSlopes.mlm(simpleSlope17) 

These are the straight-line "simple slopes" of the variable gradec   

 for the selected moderator values.  

                "gender"    slope Std. Error  z value Pr(>|z|) 

female            gradec 3.226064 0.04976438 64.82676        0 

male   gradec:gendermale 3.555891 0.04976258 71.45713        0 

We can see from the graph that, even though the effects of sex were significant, the sizes of the effects 

were not large. Note that 5,858 students were observed in this data so the test statistic was significant 

even though the size of effect was small. From the result of testing simple slopes, the rates of change of 

each gender were significantly greater than 0. We may plot individual trajectories where the lines of each 

gender have different colors by the ggplot2 package: 

long1 <- long[1:(6*100),] 
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ggplot(long1, aes(x = gradec, y = mathach, group=caseid, colour=gender)) + geom_line() 

 

The long1 dataset needs to be extracted again because we change the gender variable to the factor 

format in the original data. In the graph template, we can simply put the gender variable in the colour 

argument in the aes function. Similarly, we can plot the linear trajectories instead: 

ggplot(long1, aes(x = gradec, y = mathach, group=caseid, colour=gender)) + geom_smooth(method=lm, 

se=FALSE) 

 

Readers may try to plot different plots for different trajectories where the colors of the lines are varied by 

gender. 
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Model 18: Linear Trajectory with Time-Varying Covariate 

In this model, similar to Model 15, the linear change of math achievement scores (mathach) across 

grade (grade) is modeled. In this model, the parent encouragement (parentpush) and peer 

encouragement (peerpush) on studying math are used as time-varying covariates. The grade variable 

is centered at Grade 7 and the parent and peer encouragements are centered at their grand mean. Group-

mean centering may be more appropriate in this case but I use grand-mean centering for the sake of 

simplicity. The effects of peer and parent encouragements are fixed across students. The model with time-

varying covariates would be  

L1            (     )     (      ̅   )

    (      ̅   )      

     (   
 ) 

L2                                

                       
[
   
   
]   ([

 
 
]  [
   
      

] ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 15) 

     = The math achievement score of Measurement i in Student j 

     = The grade that the Measurement i in Student j was observed 

      = The parent encouragement score of Measurement i in Student j 

      = The peer encouragement score of Measurement i in Student j 

     = The math achievement score of Student j at Grade 7 given that the parent and peer 

encouragements equal to their grand means 

     = The expected change in math achievement score when grade increases by 1 controlling for 

parent and peer encouragement scores for Student j, which is the adjusted rate of change for 

Student j 

     = The increase in math achievement score when parent encouragement score increases by 1 at 

the same grade controlling for peer encouragement score for Student j 

     = The increase in math achievement score when peer encouragement score increases by 1 at 

the same grade controlling for parent encouragement score for Student j 

     = The average of math achievement scores in Grade 7 across students when parent and peer 

achievement scores equal to their grand mean 

     = The average adjusted rate of change in math achievement scores controlling for parent and 

peer achievement scores across students 

     = The effect of parent encouragement controlling for grade and peer encouragement, which is 

constant across students 

     = The effect of peer encouragement controlling for grade and parent encouragement, which is 

constant across students 

     = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j at given grade, parent encouragement, and peer 

encouragement 

     = The deviation of the actual adjusted math achievement score of Student j at Grade 7 from 

the average adjusted math achievement score at Grade 7 across students 
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     = The deviation of the adjusted rate of change of Student j from the average adjusted rate of 

change across students  

    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade, parent encouragement, and peer encouragement 

     = The residual variance of math achievement scores at Grade 7 across students controlling for 

parent and peer encouragements 

     = The residual variance of the rate of change in math achievement score across students 

controlling for parent and peer encouragements 

     = The residual covariance between the math achievement score at Grade 7 (initial status) and 

the rate of change controlling for parent and peer encouragements 

        √      ⁄  = The residual covariance mentioned above in the correlation scale (from -1 

to 1) 

Before running the model, parent and peer encouragements need to be centered at their grand mean: 

long$parentpushC <- long$parentpush - mean(long$parentpush, na.rm=TRUE) 

long$peerpushC <- long$peerpush - mean(long$peerpush, na.rm=TRUE) 

The na.rm argument of the mean function is specified as TRUE to find the mean by skipping missing 

observations.
12

 Next, the model of linear trajectory with time-varying covariates can be run by the lmer 

function: 

m18 <- lmer(mathach ~ 1 + gradec + parentpushC + peerpushC + (1 + gradec|caseid), data=long, 

REML=FALSE) 

summary(m18) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + parentpushC + peerpushC + (1 + gradec |      caseid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 119891 119953 -59938   119875  119890 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr   

 caseid   (Intercept) 91.2917  9.5547          

          gradec       2.3217  1.5237   0.284  

 Residual             19.6052  4.4278          

Number of obs: 17441, groups: caseid, 5833 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 50.49264    0.15799   319.6 

                                                      
12

 For the group-mean centering, a little trick is needed to find the group means by skipping missing observations. 

First, a new function, meanc, is defined as the mean function with the na.rm argument specified as TRUE:  

meanc <- function(x) mean(x, na.rm=TRUE) 

Next, the meanc function is used in the ave function to find the mean by skipping missing observations: 

long$parentpushGroupM <- ave(long$parentpush, long$caseid, FUN=meanc) 

long$peerpushGroupM <- ave(long$peerpush, long$caseid, FUN=meanc) 

long$parentpushGroupC <- long$parentpush - long$parentpushGroupM 

long$peerpushGroupC <- long$peerpush - long$peerpushGroupM 
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gradec       3.54045    0.03979    89.0 

parentpushC  0.36923    0.05448     6.8 

peerpushC   -0.12745    0.04676    -2.7 

 

Correlation of Fixed Effects: 

            (Intr) gradec prntpC 

gradec      -0.356               

parentpushC -0.235  0.322        

peerpushC   -0.127  0.185 -0.142 

The mapping from the formula and reduced-form equation would be 

mathach ~ 1 + gradec + parentpushC + peerpushC + (1 + gradec|caseid) 

       ( )     (     )     (      ̅   )     (      ̅   )     ( )     (     )      
      

      

                                          Fixed Effect                              +                                Random Effect 

This model can be compared with Model 15 by deviance test. The result was significant, 2
(2) = 10891, p 

< .001, meaning that parent and peer encouragements significantly explained math achievement scores. 

Next, the current model can be compared with the model with the random slopes of parent and peer 

encouragements. Readers may try it. The result of the deviance test would indicate significant random 

effects, 2
(7) = 23.628, p = .001. 

Model 19: Linear Trajectory with Heterogeneity of Variance 

This model is similar to Model 15 but the error variances at each time point are not equal, which is 

referred to as heteroscedastic error variances. The equations are similar to Model 15, but the error 

variances,   , depends on time point,  (   |   )
 . The lme4 package cannot analyze the model with 

heteroscedasitc L1 error variances. We will use the nlme package instead.  

library(nlme) 

Before analyzing the model with heteroscedastic L1 error variances, let’s run Model 15 by the nlme 

package first. We will use the lme function. The structure is very similar to the lmer function from the 

lme4 package that we have discussed so far: 

m15nlme <- lme(mathach ~ 1 + gradec, random = ~1 + gradec|caseid, data=long, method="ML", 

na.action=na.omit) 

summary(m15nlme) 

Output from nlme package (m15nlme) Output from lme4 package (m15) 
Linear mixed-effects model fit by maximum likelihood 

 Data: long  

       AIC    BIC    logLik 

  130777.8 130825 -65382.92 

 

Random effects: 

 Formula: ~1 + gradec | caseid 

 Structure: General positive-definite, Log-Cholesky 

parametrization 

            StdDev   Corr   

(Intercept) 9.524898 (Intr) 

gradec      1.548169 0.315  

Residual    4.534982        

 

Fixed effects: mathach ~ 1 + gradec  

               Value  Std.Error    DF  t-value p-value 

(Intercept) 50.80378 0.15039556 13182 337.8011       0 

gradec       3.39158 0.03529208 13182  96.1004       0 

 Correlation:  

       (Intr) 

gradec -0.248 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + (1 + gradec | caseid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 130778 130825 -65383   130766  130773 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr   

 caseid   (Intercept) 90.7239  9.5249          

          gradec       2.3968  1.5482   0.315  

 Residual             20.5660  4.5350          

Number of obs: 19041, groups: caseid, 5858 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 50.80376    0.15039   337.8 

gradec       3.39160    0.03529    96.1 

 

Correlation of Fixed Effects: 

       (Intr) 

gradec -0.248 
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Standardized Within-Group Residuals: 

      Min        Q1        Med        Q3       Max  

-5.943033 -0.475696  0.0172878  0.499919  4.136147  

 

Number of Observations: 19041 

Number of Groups: 5858 

The major difference between the lme and lmer functions in this code is the specification of the random 

effects. In the lmer function, random effects are specified in a parenthesis and added in the formula. The 

lme function, however, random effects are specified in the random argument. Users simply remove the 

parenthesis, begin the code with the tilde, and put in the random argument. The method argument is the 

method of estimation, which can be specified as "ML" (Full maximum likelihood) or "REML" (residual 

maximum likelihood). The na.action is to specify how to handle missing observations where 

na.omit is to use listwise deletion. Users can see that the results from the lme4 and nlme packages 

are almost identical. 

Next, we can specify the different L1 error variances across time from the output of the lme function. 

The update function is used to update the original model by releasing the constraints of equal error 

variances across time: 

m19 <- update(m15nlme, weight=varIdent(form = ~1|gradec)) 

summary(m19) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long  

       AIC      BIC    logLik 

  130691.7 130778.1 -65334.83 

 

Random effects: 

 Formula: ~1 + gradec | caseid 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev   Corr   

(Intercept) 9.448993 (Intr) 

gradec      1.574986 0.304  

Residual    4.342976        

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | gradec  

 Parameter estimates: 

        0         1         2         3         4         5  

1.0000000 1.0046543 1.0498829 1.1845033 0.9226115 1.0300098  

Fixed effects: mathach ~ 1 + gradec  

               Value  Std.Error    DF  t-value p-value 

(Intercept) 50.79434 0.14963805 13182 339.4480       0 

gradec       3.40003 0.03526212 13182  96.4217       0 

 Correlation:  

       (Intr) 

gradec -0.248 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-5.86326644 -0.47615508  0.02134337  0.50000963  4.24934381  

 

Number of Observations: 19041 

Number of Groups: 5858 

The weight argument is used to set the different error variances where varIdent(form = 

~1|gradec) means that the variances are set to be equal for those observations coming from the same 

grade. That is, the observations from different grades can have different variances.
13

  

                                                      
13

 Instead of using the update function, users may run the heteroscedastic model directly by specifying the 

weight argument in the lme function: 
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The output will provide the Variance function section. In the Parameter estimates 

subsection, those values mean the ratio of the standard deviations of residuals of a given gradec value 

over the standard deviations of residuals with gradec of 0 (Grade 7). The following R script can be used 

to calculate the standard deviation of residual variances at each time point: 

l1sd <- as.numeric(VarCorr(m19)[3, 2]) 

l1sd * coef(m19$modelStruct$varStruct, uncons = FALSE) 

       1        2        3        4        5  

4.363190 4.559616 5.144269 4.006880 4.473308 

The VarCorr function is used to extract the standard deviations (or variances) of the random effects. 

The element 3, 2 is the L1 residual standard deviation of Grade 7. Because the value is in the text 

(string) format, the as.numeric function is used to change the text to number. Next, loosely speaking, 

coef(m19$modelStruct$varStruct, uncons = FALSE) is used to extract the parameter 

estimates of the variance function provided from the summary of the output, which is the ratio of standard 

deviations across time points. The ratio can be multiplied by the L1 residual standard deviation of Grade 7 

to get the residual standard deviation of all time points. 

This model can be compared with the model with equal L1 error variances, Model 15, by the anova 

function: 

anova(m15nlme, m19) 

        Model df      AIC      BIC    logLik   Test L.Ratio p-value 

m15nlme     1  6 130777.8 130825.0 -65382.92                        

m19         2 11 130691.7 130778.1 -65334.83 1 vs 2 96.1805  <.0001 

The test statistic was significant, 2
(5) = 96.18, p < .001, meaning that the L1 error variances were 

significantly different across time points. The degree of freedom can be calculated from the difference 

between degrees of freedom of two models (11 – 6 = 5). 

Model 20: Linear Trajectory with First-Order Autocorrelation 

Multilevel models assume that errors are independent. In longitudinal model, the errors from adjacent 

time points can be more similar than the errors from the distant time points. Thus, the error correlation 

structure will be specified in this model.  

From Model 15, the errors of math achievement score across time points are assumed to be correlated by 

the first-order autocorrelation. That is, the error correlation matrix would be 

                                                                                                                                                                           

m19 <- lme(mathach ~ 1 + gradec, random = ~1 + gradec|caseid, data=long, method="ML", 

na.action=na.omit, weight=varIdent(form = ~1|gradec)) 

The update function is more convenient when users wish to adjust the original model. Users simply adjust the 

original model and the following models will be automatically adjusted.  
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where rows and columns of the matrix represent the errors at Grade 7-12. The interpretation of this model 

is similar to Model 15. Because the lme4 package cannot be used for specifying L1 error structure, the 

autocorrelation is specified by the nlme package: 

m20 <- update(m15nlme, correlation=corARMA(p = 1)) 

summary(m20) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long  

       AIC      BIC    logLik 

  130473.8 130528.8 -65229.92 

 

Random effects: 

 Formula: ~1 + gradec | caseid 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev   Corr   

(Intercept) 8.717791 (Intr) 

gradec      1.093237 0.764  

Residual    5.578114        

 

Correlation Structure: AR(1) 

 Formula: ~1 | caseid  

 Parameter estimate(s): 

      Phi  

0.3716054  

Fixed effects: mathach ~ 1 + gradec  

               Value  Std.Error    DF  t-value p-value 

(Intercept) 50.82123 0.14999493 13182 338.8197       0 

gradec       3.34795 0.03526062 13182  94.9487       0 

 Correlation:  

       (Intr) 

gradec -0.255 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-4.87351623 -0.42069465  0.04564341  0.50304165  3.74030927 

The correlation argument is used to specify the L1 error correlation structure where corARMA is the 

correlation structure based on auto regression and moving average. In the corARMA function, p is the 

order of autocorrelation
14

, which is specified as 1 here. Users may use corAR1(), which is the same 

thing as corARMA(p = 1).
15

  

The autocorrelation is provided in the Correlation Structure section, which is .37. That is, the 

errors of adjacent time points are more similar than distant time points. This model can be compared with 

Model 15 by the deviance test: 

anova(m15nlme, m20) 

        Model df      AIC      BIC    logLik   Test L.Ratio p-value 

m15nlme     1  6 130777.8 130825.0 -65382.92                        

                                                      
14

 Users may specify the order of moving average by the q argument. 
15

 Instead of using the update function, the lme function can be run directly by specifying the correlation 

argument in the function. 
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m20         2  7 130473.8 130528.8 -65229.92 1 vs 2     306  <.0001 

The autocorrelation was significant, 2
(1) = 306, p < .001. Readers are encouraged to specify the 

autocorrelation greater than the first order or specify the autocorrelation with heteroscedastic errors. 

Model 21: Piecewise Linear Trajectory 

In this model, the change of math achievement scores (mathach) across grade (grade) is separated into 

two phases: junior high school (Grade 7-9) and high school (Grade 10-12). Researchers may think that the 

rates of change are different during two periods of time. The grade variable is separated into two 

variables to represent two different periods. 

                

where     is the grade that the Measurement i in Student j was observed,      represents the change during 

junior high, and      represents the change during high school. We may specify the values of      and      

as in the following table: 

Grade (   ) Junior High School (    ) High School (    ) 

7 0 0 

8 1 0 

9 2 0 

10 2 1 

11 2 2 

12 2 3 

Notice that the values in each row satisfy the equation. Two variables (gradec1 and gradec2) can be 

created to represent the changes during junior high school and high school: 

long$gradec1 <- long$gradec 

long$gradec1[long$gradec1 %in% c(3, 4, 5)] <- 2 

long$gradec2 <- long$gradec - long$gradec1 

First, we create the gradec1 variable as a replicate of the centered grade variable, gradec. Second, 

any values of the gradec1 variable that are equal to 3, 4, or 5 are recoded as 2. The %in% operator is to 

check whether a value on the left hand side is equal to any values on the right hand side. In this case, if 

any values in the variable on the left hand side are equal to 3, 4, or 5, the results will be TRUE and those 

cases are selected by the square bracket and recoded as 2. In any values in the variable on the right hand 

side are not equal to 3, 4, or 5 (i.e., 0, 1, or 2), the results will be FALSE and those cases are not selected. 

Finally, the gradec2 variable is simply calculated by subtracting the gradec variable by the 

gradec1 variable. 

The changes in each phase are random in this model. The model of piecewise linear trajectory would be  

L1                                  (   
 ) 

L2             

            

            
[

   
   
   
]  ([

 
 
 
]  [
   
      
         

] ) 

These notations should represent (the blue lines indicate that the meanings changed from Model 15) 
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     = The math achievement score of Measurement i in Student j 

     = The math achievement score of Student j at Grade 7 (both      and      are 0). 

     = The expected change in math achievement score when grade during junior high school 

increases by 1 for Student j, which is the rate of change during junior high school for Student j 

     = The expected change in math achievement score when grade during high school increases 

by 1 for Student j, which is the rate of change during high school for Student j 

     = The average of math achievement scores in Grade 7 across students 

     = The average rate of change during junior high school in math achievement scores across 

students 

     = The average rate of change during high school in math achievement scores across students 

     = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j at a given grade level  

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students 

     = The deviation of the rate of change during junior high school of Student j from the average 

rate of change during junior high school across students  

     = The deviation of the rate of change during high school of Student j from the average rate of 

change during high school across students  

    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

     = The variance of math achievement scores at Grade 7 across students  

     = The variance of the rate of change in math achievement score during junior high school 

across students 

     = The variance of the rate of change in math achievement score during high school across 

students 

     = The covariance between the math achievement score at Grade 7 (initial status) and the rate 

of change during junior high school 

     = The covariance between the math achievement score at Grade 7 (initial status) and the rate 

of change during high school 

     = The covariance between the rate of change during junior high school and the rate of change 

during high school 

        √      ⁄  (where      0, 1, or 2 and    ) = The covariance mentioned above in the 

correlation scale (from -1 to 1) 

Next, the model with linear trajectory can be run by the lmer function (from the lme4 package): 

m21 <- lmer(mathach ~ 1 + gradec1 + gradec2 + (1 + gradec1 + gradec2|caseid), data=long, 

REML=FALSE) 

summary(m21) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec1 + gradec2 + (1 + gradec1 + gradec2 | caseid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 130311 130390 -65146   130291  130301 

Random effects: 
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 Groups   Name        Variance Std.Dev. Corr         

 caseid   (Intercept) 81.3419  9.0190                

          gradec1      6.3483  2.5196   0.408        

          gradec2      3.4733  1.8637   0.002 0.134  

 Residual             18.1122  4.2558                

Number of obs: 19041, groups: caseid, 5858 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 50.13468    0.15022   333.7 

gradec1      4.09437    0.06834    59.9 

gradec2      2.98733    0.05176    57.7 

 

Correlation of Fixed Effects: 

        (Intr) gradc1 

gradec1 -0.272        

gradec2 -0.040 -0.287 

The mapping from the formula and reduced-form equation would be 

mathach ~ 1 + gradec1 + gradec2 + (1 + gradec1 + gradec2|caseid) 

       ( )                     ( )                      
      

      

    Fixed Effect                +                 Random Effect 

The linear growth model, Model 15, is nested in this model. If the linear change in the first and second 

phases,     and    , are equal in every student, this model will be Model 15. Therefore, we can test 

whether the two-phase change is better than the one-phase change by the deviance test: 

> anova(m15, m21) 

Data: long 

Models: 

m15: mathach ~ 1 + gradec + (1 + gradec | caseid) 

m21: mathach ~ 1 + gradec1 + gradec2 + (1 + gradec1 + gradec2 | caseid) 

    Df    AIC    BIC logLik  Chisq Chi Df Pr(>Chisq)     

m15  6 130778 130825 -65383                              

m21 10 130311 130390 -65146 474.76      4  < 2.2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The two-phase change model was significantly better than the one-phase change model, 2
(4) = 474.76, p 

< .001. From the output, the change in junior high school was steeper than the change in high school on 

average. The correlation between linear change in junior high school and linear change in high school was 

.134. The correlation between the math achievement score at Grade 7 and linear change at junior high 

school was .408. The correlation between math achievement score at Grade 7 and linear change at high 

school was .002. Readers may wonder whether the piecewise linear growth model or quadratic growth 

model fitted the data better. Readers are encouraged to take a look at AIC or BIC from both models. 

The piecewise linear growth model can be visualized by the ggplot2 package. I cannot find how to 

make a single meainingful plot with multiple lines. However, multiple plots of individual growths can be 

created:  

ggplot(long2, aes(x = gradec, y = mathach, group = gradec > 2.5)) + facet_wrap(~caseid) + 

geom_point() + geom_smooth(method = "lm", se=TRUE) 
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The trick is to create a group in the template such that Group 1 represents the observations that gradec 

> 2.5 (high school) and Group 2 represents the observations that gradec < 2.5 (junior high 

school).  

Rearrange Data Structure 
In dealing with longitudinal data, researchers may need to transform between long and wide formats 

frequently. In the situations which times are nested in cases, the long format has each row representing 

the observation at each time point. The long format is used in the lme4 and nlme package, as well as 

most multilevel model programs: 

Time Case DV TIV CIV 

1 1 5 4 4 

2 1 6 1 4 

3 1 2 2 4 

4 1 3 6 4 

1 2 8 8 8 

2 2 9 9 8 

3 2 5 4 8 

4 2 4 2 8 

1 3 1 3 6 

2 3 7 4 6 

3 3 5 5 6 

4 3 3 7 6 

where DV is dependent variable, TIV is time-varying covariate, and CIV is time-invariant (case-level) 

covariate. On the other hand, in wide format, each row represents each case. If a variable is measured at 

different time points, the variable will be spanned in different columns to represent the variable values at 
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different time points. The wide format is usually used in structural equation modeling, which also has 

features to deal with longitudinal model: 

Case DV1 DV2 DV3 DV4 TIV1 TIV2 TIV3 TIV4 CIV 

1 5 6 2 3 4 1 2 6 4 

2 8 9 5 4 8 9 4 2 8 

3 1 7 5 3 3 4 5 7 6 

In multiple imputation, sometimes, the wide format is more appropriate if the number of different time 

points is not many. In transforming between the data in long and wide formats, the reshape function 

will be used. I will illustrate this function using the long data set:   

long <- read.csv("mathgrowth.csv", header = TRUE, na.strings="-999999") 

head(long) 

  caseid schoolid grade mathach parentpush peerpush likemath gender race 

1      1      101     7   70.05          2        0        1      2    3 

2      1      101     8   69.23          2        2        1      2    3 

3      1      101     9   71.07          2        0        1      2    3 

4      1      101    10   78.52          2        1        1      2    3 

5      1      101    11   81.66          2        0        1      2    3 

6      1      101    12   78.77          2        0        1      2    3 

The long data set is in the long format, which grades are nested in students. Here is the information of 

the data set: 

 Student ID: caseid 

 Time variable: grade 

 Student-level variables: schoolid, likemath, gender, race 

 Time-varying variables: mathach, parentpush, peerpush 

Before restructuring a data set, classifying variables in the data set into four types listed above is really 

helpful. Note that schoolid can be viewed as Level-3 ID. I will ignore the school ID by treating it as 

student-level variable for the sake of simplicity.  

First, let’s change the long data set from the long format to the wide format by the reshape function: 

wide <- reshape(data = long, idvar = "caseid", timevar="grade", v.names=c("mathach", 

"parentpush", "peerpush"), direction="wide") 

 data: The target data set in the long format 

 idvar: The ID of L2 units, which is caseid. 

 timevar: Time variable, which is grade. 

 v.names: Time-varying variables, which are mathach, parentpush, peerpush 

 direction: The direction of restructuring. In this case, the change is to wide format. 

All other variables that are not specified in idvar, timevar, and v.names will be treated as L2 

variable (time-invariant variables), which are schoolid, likemath, gender, and race. The head 

function can be used to investigate the resulting data set: 

head(wide) 
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   caseid schoolid likemath gender race mathach.7 parentpush.7 peerpush.7 mathach.8 parentpush.8 peerpush.8 

1       1      101        1      2    3     70.05            2          0     69.23            2          2 

7       2      101        3      2    3     59.36            2          2     65.20            0          1 

13      3      101        3      1    3     68.47            0          0     69.31            2          0 

19      4      101        0      1    1     61.66            0          0     66.08            0          1 

25      5      101        3      1    3     69.87            2          3     65.75            2          3 

31      6      101        2      1    3     64.22            2          0     63.88            2          0 

   mathach.9 parentpush.9 peerpush.9 mathach.10 parentpush.10 peerpush.10 mathach.11 parentpush.11 peerpush.11 

1      71.07            2          0      78.52             2           1      81.66             2           0 

7      68.92            1          0      72.06             2           2      70.00             2           1 

13        NA           NA         NA         NA             0          NA      80.57             0           0 

19     71.02            1          0      70.00             1           1      82.12             2           0 

25        NA           NA         NA      74.47            NA           1      76.04             1           0 

31     59.37            2          0      61.90             2           0      78.31             2           0 

   mathach.12 parentpush.12 peerpush.12 

1       78.77             2           0 

7       75.05             2           0 

13         NA            NA          NA 

19      90.01             1           0 

25      80.02             0           1 

31      79.07             2           0 

The time-varying variables (mathach, parentpush, and peerpush) are spanned in the columns 

based on different grades.  

Let’s change the wide data set back to the long format. A little trick is needed. First, we need to create a 

vector of variable names that represent the same variable measured at different time. From the wide data 

set, mathach.7, mathach.8, mathach.9, mathach.10, mathach.11, and mathach.12 are 

all measured math achievement. Thus, the vector name can be created: 

mathach <- paste0("mathach.", 7:12) 

mathach 

[1] "mathach.7"  "mathach.8"  "mathach.9"  "mathach.10" "mathach.11" "mathach.12" 

The paste0 function is used to simply concatenate "mathach." with numbers 7 to 12. The vector 

names of parentpush and peerpush can be created as well: 

parentpush <- paste0("parentpush.", 7:12) 

peerpush <- paste0("peerpush.", 7:12) 

Next, the vectors of names are combined into a list: 

timevarying <- list(mathach, parentpush, peerpush) 

Finally, the reshape function is used to transform the data in the wide format back into the long format: 

long2 <- reshape(data = wide, idvar = "caseid", times = 7:12, timevar="grade", varying = 

timevarying, v.names=c("mathach", "parentpush", "peerpush"), direction="long") 

 data: The target data set in the wide format 

 idvar: The ID of L2 units, which is caseid. 

 times: The unit of time that each variable was measured in the specified vectors above, which is 

from Grade 7 to Grade 12 

 timevar: The name of the time variable, which is grade (or any other names) 

 varying: The list of vectors containing names of the same variable measured at different time 

points, which is the timevarying object created above 
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 v.names: The names of the time-varying variables in each element of the list, which are 

mathach, parentpush, and peerpush (or any other names). 

 direction: The direction of restructuring. In this case, the change is to long format. 

All other variables that are not specified in idvar and varying will be treated as L2 variables (time-

invariant variables), which are schoolid, likemath, gender, and race. The head function can be 

used to investigate the resulting data set: 

head(long2) 

    caseid schoolid likemath gender race grade mathach parentpush peerpush 

1.7      1      101        1      2    3     7   70.05          2        0 

2.7      2      101        3      2    3     7   59.36          2        2 

3.7      3      101        3      1    3     7   68.47          0        0 

4.7      4      101        0      1    1     7   61.66          0        0 

5.7      5      101        3      1    3     7   69.87          2        3 

6.7      6      101        2      1    3     7   64.22          2        0 

Users may check whether the long and long2 data sets are the same. The easy way to check is to use 

the summary function on both data sets. The results should be equivalent. 

Missing Data 

Both lme4 and nlme package simply uses listwise deletion when any observations are missing. Listwise 

deletion provides an accurate result in very restricted situation (missing completely at random) and 

usually provides lower power than more advanced techniques. In this section, I will illustrate how to use 

multiple imputation by the mice package (Van Buuren & Groothuis-Oudshoorn, 2011) to handle data 

with missing observations. Because the data with missing observations are imputed into multiple 

complete data sets, I will show how to analyze multiply-imputed data and pool the results from different 

analysis results. I assume that readers know the basic of missing data mechanisms and multiple 

imputation (in a single level) here. We will use the long dataset from the growth curve model section. 

Let’s load the mice package and reload the long data set. 

library(mice) 

long <- read.csv("mathgrowth.csv", header = TRUE, na.strings="-999999") 

If you run the summary function on the data set, you will notice many NA observations in the mathach, 

parentpush, peerpush, likemath, and race variables. The mathach, parentpush, 

peerpush, and likemath variables are assumed to be continuous variables. The race variable is a 

categorical variable with three categories (hispanic, black, and others). Here are the recommended steps 

for multilevel multiple imputation using mice: 

1. Create dummy variables for categorical variables 

2. Center your variables except group-mean centering 

3. Create interactions (including cross-level interaction) or other transformations (e.g., quadratic 

terms) 

4. Identify the L2 ID variable, used, and unused variables 

5. Classify the used variables based on types of effects (fixed vs. random), types of measurement 

(continuous vs. dummy), and having missing observations (yes vs. no) 
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6. Specify the relations among variables in the imputation model (from Step 3) 

7. Run multiple imputation with a specified number of imputations 

8. Check for convergence of the imputation results 

9. Analyze each imputed data 

10. Pool the analysis results 

Step 1: Dummy Variables 

Because the mice package cannot impute the factor variable with more than two categories directly in 

the multilevel imputation, categorical variables are transformed as dummy variables. The gender and 

race variables are categorical variables at L2 so they are transformed to dummy variables: 

long$gender <- long$gender == 2 # 1 = Male; 0 = Female 

long$hispanic <- long$race == 1 # 1 = Hispanic 

long$black <- long$race == 2 # 1 = Black 

The hispanic and black variables are new variables in the long data set. 

Step 2: Centering 

The grade variable needs to be centered at Grade 7: 

long$gradec <- long$grade - 7 

Step 3: Interactions and Transformations 

The interactions are created. In this case, I expect that different gender groups and different racial groups 

have different linear rate of change. Therefore, three interactions are created: intgender 

(gradec*gender), inthisp (gradec*hispanic), intblack (gradec*black).  

long <- data.frame(long, intgender = long$gradec * long$gender, inthisp = long$gradec * 

long$hispanic, intblack = long$gradec * long$black) 

The data.frame function is used to bind three extra variables into the long data set and retains the 

data frame format. Note that, in the products of two variables, if a case has missing values in either of two 

variables, the interaction will be a missing value. The relationship between the interaction variable and 

the main effect variables must be retained (e.g., inthisp must be equal to the product of gradec and 

hispanic) after imputation. Therefore, users must specify the relationship between variables in the 

imputation model, which will be shown in Step 6. 

Step 4: L2 ID, Used, and Unused Variables 

L2 ID variable is the caseid variable. There are three variables that we will not use at all in the 

imputation models: schoolid (ignored for the sake of simplicity), grade (which was transformed to 

gradec), and race (which was transformed to hispanic and black). These three variables will be 

simply retained in the data set and have no role during the imputation process. Thus, we have three types 

of variables: 

1. L2 ID: caseid 

2. Unused variables: schoolid, grade, race 



R for Multilevel Models  95 

3. Used variables: mathach, parentpush, peerpush, likemath, gender, hispanic, 

black, gradec, intgender, inthisp, intblack 

Let’s make new objects as shortcuts of three types of variables: 

l2id <- "caseid" 

unused <- c("schoolid", "grade", "race") 

used <- setdiff(colnames(long), c(l2id, unused)) 

The setdiff function is used to delete any elements of the vector in the first argument that are 

redundant with any elements in the second argument. I started with all variable names and delete L2 ID 

and unused variables. Hence, the remaining variables are the used variables. You may type them out 

manually. 

From three groups of variables, we need to change the imputation model according to each type of 

variables. Initially, the imputation model template is created by the mice function: 

ini <- mice(long, maxit = 0) 

The first argument is the target data set. The maxit argument is the number of iterations. The argument 

is set to 0 so the multiple imputation has not been run yet. We simply want to create a template of the 

imputation model. Then, the prediction model, pred, and the method of imputations, meth, were 

extracted: 

pred <- ini$pred 

meth <- ini$meth 

The prediction model can be investigated by simply typing pred in the R console. You will see the 

following matrix: 

 
caseid schoolid grade mathach parentpush peerpush likemath gender race hispanic black gradec intgender inthisp intblack 

caseid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

schoolid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

grade 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

mathach 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 

parentpush 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 

peerpush 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 

likemath 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 

gender 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

race 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 

hispanic 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 

black 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

gradec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

intgender 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

inthisp 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 

intblack 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 

Rows represent the predicted variable ands columns represent the predictors. We need to edit this matrix 

according to each type of variable. Here are the meanings of the values in each cell: 

 0 is to not use as a predictor 

 1 is to use as a fixed predictor (not random across L2 units) 

 2 is to use as a random predictor 

 -2 is the L2 ID 
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For example,  

 
caseid schoolid grade 

mathach -2 0 1 

The missing values of the mathach variable is predicted by grade (as a fixed predictor) and not 

predicted by schoolid where and the caseid variable is the L2 ID. 

In the prediction matrix, all rows and columns relating to unused variables must be 0 (grey highlight): 

pred[unused, ] <- 0 

pred[, unused] <- 0 

In all rows of used variables, the column of L2 ID must be -2 (orange highlight): 

pred[used, l2id] <- -2 

All values in the row of L2 ID must be 0 (green highlight), which means having no predictors: 

pred[l2id, ] <- 0 

The resulting matrix will be 

 
caseid schoolid grade mathach parentpush peerpush likemath gender race hispanic black gradec intgender inthisp intblack 

caseid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

schoolid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

grade 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

mathach -2 0 0 0 1 1 1 1 0 1 1 0 1 1 1 

parentpush -2 0 0 1 0 1 1 1 0 1 1 0 1 1 1 

peerpush -2 0 0 1 1 0 1 1 0 1 1 0 1 1 1 

likemath -2 0 0 1 1 1 0 1 0 1 1 0 1 1 1 

gender -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

race 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

hispanic -2 0 0 1 1 1 1 1 0 0 1 0 1 1 1 

black -2 0 0 1 1 1 1 1 0 1 0 0 1 1 1 

gradec -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

intgender -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

inthisp -2 0 0 1 1 1 1 1 0 1 1 0 1 0 1 

intblack -2 0 0 1 1 1 1 1 0 1 1 0 1 1 0 

The method of imputations can be investigated. You will find the following vector: 

meth 

    caseid   schoolid      grade    mathach parentpush   peerpush   likemath     gender       race   hispanic  

        ""         ""         ""      "pmm"      "pmm"      "pmm"      "pmm"         ""      "pmm"   "logreg"  

     black     gradec  intgender    inthisp   intblack  

  "logreg"         ""         ""      "pmm"      "pmm" 

The L2 ID and unused variables should not have any methods of imputations so they are specified as "". 

meth[c(l2id, unused)] <- "" 

Step 5: Types of Used Variables 

The used variables are classified based on three dimensions: 1) types of effect, 2) types of measurement, 

and 3) having missing observations. Users can use the summary function on the target data set to see 

which variables have missing observations (NA). Users will notice that gender, gradec, and 

intgender do not have any missing observations. Here are the classifications of used variables based 

on three dimensions: 
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 Missing No Missing 

Continuous Dummy Continuous Dummy 

Fixed Effect (1) likemath, 

inthisp, 

intblack 

hispanic, 

black 

intgender gender 

Random Effect (2) mathach, 

parentpush, 

peerpush 

 gradec  

Note that all cross-level interactions must be treated as fixed effects. Let’s create lists of variables with 

missing/no missing observations and fixed/random effects: 

nomiss <- c("gender", "gradec", "intgender") 

miss <- setdiff(used, nomiss) 

random <- c("mathach", "parentpush", "peerpush", "gradec") 

fixed <- setdiff(used, random) 

In the prediction matrix, the rows of used variables without any missing observations must be 0 indicating 

that no imputation model is applied to those variables (purple highlight): 

pred[nomiss, ] <- 0 

The cells on the rows of used variables with missing observations and the columns of fixed effects are 

specified as 1 (blue highlight): 

pred[miss, fixed] <- 1 

The cells on the rows of used variables with missing observations and the columns of random effects are 

specified as 2 (red highlight): 

pred[miss, random] <- 2 

Finally, all variables cannot be predicted by themselves so all diagonal elements must be 0: 

diag(pred) <- 0 

The resulting prediction matrix will be 

 
caseid schoolid grade mathach parentpush peerpush likemath gender race hispanic black gradec intgender inthisp intblack 

caseid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

schoolid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

grade 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

mathach -2 0 0 0 2 2 1 1 0 1 1 2 1 1 1 

parentpush -2 0 0 2 0 2 1 1 0 1 1 2 1 1 1 

peerpush -2 0 0 2 2 0 1 1 0 1 1 2 1 1 1 

likemath -2 0 0 2 2 2 0 1 0 1 1 2 1 1 1 

gender 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

race 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

hispanic -2 0 0 2 2 2 1 1 0 0 1 2 1 1 1 

black -2 0 0 2 2 2 1 1 0 1 0 2 1 1 1 

gradec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

intgender 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

inthisp -2 0 0 2 2 2 1 1 0 1 1 2 1 0 1 

intblack -2 0 0 2 2 2 1 1 0 1 1 2 1 1 0 

Next, we will edit the methods of imputation. Here are the options for imputation methods: 
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 L1 continuous variables: There are two options for L1 continuous variables: "2l.pan" as two-

level regression with homoscedastic L1 errors and "2l.norm" as two-level regression with 

heteroscedastic L1 errors. I will use "2l.pan" here because it is faster (for illustration). 

 L2 continuous variables: "2lonly.norm" is to apply the two-level regression first, then find 

the average of imputed values within one L2 unit, and finally impute all missing observations in 

the L2 unit by the average.  

 L2 dummy variables: "2lonly.pmm" is to apply the two-level regression first, then find the 

average of imputed values within one L2 unit, find the closet observed values (0 and 1) to the 

average, and finally impute all missing observations in the L2 unit by the closet value. Loosely 

speaking, if the average is less than 0.5, 0 is imputed. Otherwise, 1 is imputed.
16

  

 L1 dummy variables: I have not found any methods in the mice package yet. 

Therefore, we can adjust the methods of imputation accordingly: 

meth[c("likemath", "inthisp", "intblack")] <- "2lonly.norm" # L2 continuous variables 

meth[c("hispanic", "black")] <- "2lonly.pmm" # L2 dummy variables 

meth[c("mathach", "parentpush", "peerpush")] <- "2l.pan" # L1 continuous variables 

For the used variables without missing observations, the methods of imputation must be specified as "". 

meth[nomiss] <- "" 

Step 6: Remain Interactions and Transformations in Imputation Model 

The relations between interactions and main effects must be specified here. The interaction variables that 

do not have missing observations do not need to specify anything here—you may specify it but the 

specification is not necessary. Thus, the intgender variable is left alone. Thus, the relations between 

inthisp and intblack variables and their main effects must be specified. The relations are specified 

in the method of imputation: 

meth["inthisp"] <- "~I(gradec*hispanic)" 

meth["intblack"] <- "~I(gradec*black)" 

The resulting methods of imputation would be 

meth 

               caseid              schoolid                 grade               mathach            parentpush  

                   ""                    ""                    ""              "2l.pan"              "2l.pan"  

             peerpush              likemath                gender                  race              hispanic  

             "2l.pan"         "2lonly.norm"                    ""                    ""          "2lonly.pmm"  

                black                gradec             intgender               inthisp              intblack  

         "2lonly.pmm"                    ""                    "" "~I(gradec*hispanic)"    "~I(gradec*black)" 

The ~I() is used to crop the transformation from other variables in the data frame, which can be any 

relations beside interactions (e.g., ~I(gradec^2)). Because hispanic and black are used to create 

inthisp and intblack, hispanic and black cannot be predicted by inthisp and intblack. 

The prediction matrix must be changed accordingly: 

                                                      
16

 Note that this method is not similar to Graham’s (2009) suggestion that the resulting imputed values for dummy 

varaibles should not be rounded. If you follow Graham’s suggestion, "2lonly.norm" should be used. 
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pred[c("hispanic", "black"), c("inthisp", "intblack")] <- 0 

The resulting prediction matrix would be (see changes in the texts with yellow highlights) 

 
caseid schoolid grade mathach parentpush peerpush likemath gender race hispanic black gradec intgender inthisp intblack 

caseid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

schoolid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

grade 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

mathach -2 0 0 0 2 2 1 1 0 1 1 2 1 1 1 

parentpush -2 0 0 2 0 2 1 1 0 1 1 2 1 1 1 

peerpush -2 0 0 2 2 0 1 1 0 1 1 2 1 1 1 

likemath -2 0 0 2 2 2 0 1 0 1 1 2 1 1 1 

gender 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

race 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

hispanic -2 0 0 2 2 2 1 1 0 0 1 2 1 0 0 

black -2 0 0 2 2 2 1 1 0 1 0 2 1 0 0 

gradec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

intgender 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

inthisp -2 0 0 2 2 2 1 1 0 1 1 2 1 0 1 

intblack -2 0 0 2 2 2 1 1 0 1 1 2 1 1 0 

Step 7: Start Multiple Imputation 

The mice function is used again but the maxit argument is not fixed as 0: 

imp <- mice(long, m = 5, maxit = 10, meth = meth, pred = pred, seed = 123321) 

Disclaimer: This command will take a long time so that you may finish having a meal.  

The first argument is the target data set. The m argument is the number of imputations. I use 5 here to 

save time. Users are encouraged to run more than 5 imputations. The maxit argument is the number of 

iterations. The number of iterations should be high enough so that the imputation is convergent. I will 

show you how to examine the convergence status in Step 8. The meth argument is the method of 

imputations. The pred argument is the prediction matrix. The seed argument is the random seed 

number. Researchers are expected to get the same results if the same seed number is applied (given that 

other arguments remain the same). 

Step 8: Checking for Convergence 

The easy way to investigate the convergence of an imputation model is to plot a graph: 

plot(imp, c("mathach", "parentpush", "peerpush")) 
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The first argument is the resulting imputation. The second argument is the target variables to be 

investigated. The graphs will show the mean and standard deviations of each variables where each line 

indicates different imputations. In a convergent imputation, different lines should be freely intermingled 

with each other, without showing any definite trends. If lines have not crossed between each other for a 

multiple times yet, a higher number of iterations are needed. For these three variables, the convergence 

status should be good. Users are encouraged to check the plots of the likemath, hispanic, and 

black variables. 

Step 9: Analyze Each Imputed Data 

Each imputed data set can be analyzed by a target model. The mice package provides the with function 

to help analyze each imputed data set. I analyze the imputed data sets by two models: linear model with 

fixed slope and linear model with random slopes: 

fit1 <- with(imp, lmer(mathach ~ gradec + (1|caseid), REML=FALSE)) 

fit2 <- with(imp, lmer(mathach ~ gradec + (1 + gradec|caseid), REML=FALSE)) 

The first argument is the resulting imputation model. The second argument is a target analysis model. In 

this case, the lmer command (or lme command from the nlme package) is written as if we analyze a 

data set. The only difference is to not specify the data argument. 
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Step 10: Pooling Results 

For the fixed effects, researchers can use the pool function to combine analysis results from multiply 

imputed data sets: 

out1 <- pool(fit1) 

summary(out1) 

                  est         se        t         df     Pr(>|t|)     lo 95     hi 95 nmis       fmi   lambda 

(Intercept) 50.806450 0.17115114 296.8514 119.229666 0.000000e+00 50.467560 51.145339   NA 0.1960859 0.182713 

gradec       3.384409 0.03107243 108.9200   8.008251 5.484502e-14  3.312768  3.456049    0 0.7597566 0.706418 

> out2 <- pool(fit2) 

> summary(out2) 

                  est         se         t       df Pr(>|t|)     lo 95     hi 95 nmis       fmi    lambda 

(Intercept) 50.806450 0.14802933 343.21880 66.79988        0 50.510966 51.101934   NA 0.2659041 0.2442494 

gradec       3.384409 0.03574667  94.67759 14.02259        0  3.307751  3.461066    0 0.5885336 0.5337539 

The output of the pool function can be investigated by the summary function. In the output, fmi is the 

fraction of missing information and lambda is the proportion of variation attributed to the missing data. 

The fraction of missing information tends to be higher if the proportion of missing observations is higher. 

Because two models are nested models, the deviance test can be used by the anovaMI function from the 

rockchalkMultilevel package:
17

 

anovaMI(fit1, fit2) 

      F     df1     df2     p.F  

658.325   2.000  11.460   0.000 

Group-Mean Centering 

The method of creating new variables to represent group means or group-mean centered variables is not 

easy for multiply-imputed data. Thus, we need to create group means or group-mean centered variables 

within a formula using the I() command. For example, the math achievement is predicted by parent 

encouragement, which is group-mean centered. The group means of parent encouragement are added 

back and centered at the grand mean. Researchers can analyze each imputed data by 

fit3 <- with(imp, lmer(mathach ~ I(parentpush - ave(parentpush, caseid)) + I(ave(parentpush, 

caseid) - mean(parentpush)) + (1|caseid), REML=FALSE)) 

out3 <- pool(fit3) 

summary(out3) 

> summary(out3) 

                                                    est         se         t          df     Pr(>|t|) 

(Intercept)                                   59.267471 0.14816171 400.01880 1166.452443 0.000000e+00 

I(parentpush - ave(parentpush, caseid))       -3.079125 0.08673658 -35.49973    9.218892 3.546763e-11 

I(ave(parentpush, caseid) - mean(parentpush))  3.764696 0.19319455  19.48655  361.647246 0.000000e+00 

                                                  lo 95     hi 95 nmis        fmi     lambda 

(Intercept)                                   58.976778 59.558164   NA 0.05893957 0.05732741 

I(parentpush - ave(parentpush, caseid))       -3.274629 -2.883621   NA 0.71431792 0.65840538 

I(ave(parentpush, caseid) - mean(parentpush))  3.384770  4.144622   NA 0.10936386 0.10445200 

                                                      
17

 The anovaMI function computes the deviance tests for each imputed data and pool the chi-square values by the Li, 

Meng, Raghunathan, & Rubin (1991) method. I have not tested the performance of this method yet. 
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The I(parentpush - ave(parentpush, caseid)) is the group-mean centered parent 

encouragement (L1 effect) and the I(ave(parentpush, caseid) - mean(parentpush)) is 

the group means of parent encouragement (L2 effect) that is centered at the grand mean. Interestingly, the 

measurement-level effect was significantly negative but the student-level effect was significantly positive. 

As the last note on multiple imputation, if the data set is a longitudinal data that the time variable is 

constant across cases. For example, all students are measured at Grade 7 to Grade 12. Researchers may 

change the data into the wide format and use multiple imputation on the data with wide format. The 

benefits of using multiple imputation on the data with wide format is that 1) the changes are not restricted 

to linear change (or any specified types of changes) and 2) more appropriate options are available for 

different types of variables (e.g., ordinal logistic regression for parentpush and peerpush, which are 

measured in the Likert scale). 

Alternative Statistical Tests 

Multiparameter Test 

Researchers may have a hypothesis that could be tested by the addition or subtraction among regression 

coefficients of the fixed effects. I will provide three examples of using the multiparameter test.  

Example 1: The Difference in Linear Rates of Change 

In the piecewise linear growth model, Model 21, researchers may wish to test whether the linear rates of 

change at junior high school and high school are different. In this case, the hypothesis can be written as 

                             

From the summary function of the multilevel output, the coefficients of fixed effects are arranged as    , 

   , and    . To test a multiparameter test, users need to build a contrast matrix that contains the 

coefficients of each parameter in the contrast. To find the coefficients, users try to make 0 on either side 

of the equation, which is          . Then, the coefficients of    ,    , and     are 0, 1, and -1, 

respectively. Users need to make the following matrix: 

     (Intercept)     (gradec1)     (gradec2) 

          0 1 -1 

The rows of contrast matrix represents each contrast (I will show multiple contrasts later) and the columns 

of contrast matrix represents each regression coefficient listed in the order of the fixed effects from the 

summary function. The matrix can be made: 

ctr <- matrix(c(0, 1, -1), 1) 

We will use the multcomp package (Hothorn, Bretz, & Westfall, 2008) to test the contrast. The glht 

function will be used to test the contrast:
18

 

                                                      
18

 If users open the lme4 package and nlme package at the same time, researchers will have a problem in running 

the glht function. Researchers need to detach the nlme package from the R workspace by typing 

detach(package:nlme) 
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library(multcomp) 

phasediff <- glht(m21, linfct = ctr) 

In the glht function, the first argument is the result from the lmer function. The linfct argument is 

the contrast matrix. Then, the result can be investigated by the summary function: 

summary(phasediff) 

         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lmer(formula = mathach ~ 1 + gradec1 + gradec2 + (1 + gradec1 +  

    gradec2 | caseid), data = long, REML = FALSE) 

 

Linear Hypotheses: 

       Estimate Std. Error z value Pr(>|z|)     

1 == 0  1.10704    0.09684   11.43   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Adjusted p values reported -- single-step method) 

The confidence interval of the contrast can be calculated by the confint function: 

confint(phasediff) 

         Simultaneous Confidence Intervals 

 

Fit: lmer(formula = mathach ~ 1 + gradec1 + gradec2 + (1 + gradec1 +  

    gradec2 | caseid), data = long, REML = FALSE) 

 

Quantile = 1.96 

95% family-wise confidence level 

  

 

Linear Hypotheses: 

       Estimate lwr    upr    

1 == 0 1.1070   0.9172 1.2968  

The confidence interval can be ploted by the following script: 

plot(confint(phasediff)) 
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From the result, the rate of change at the junior high school was significantly steeper than the rate of 

change at high school. Instead of specifying the contrast matrix, users may specify the syntax, 

"gradec1 - gradec2 = 0", instead: 

phasediff2 <- glht(m21, linfct = "gradec1 - gradec2 = 0") 

summary(phasediff2) 

Example 2: The Influence of Significant Others 

In the linear growth model with time-varying covariates, Model 18, researchers may wish to investigate 

whether 1) the average of the parents influence and peers influence is different from 0 and 2) the 

influences from parents and peer are different. The hypotheses can be written as 

    
       

 
                          

                             

The contrast matrix will have two rows representing two contrasts: 

     (Intercept)     (gradec)     (parentpushC)     (peerpushC) 

                0 0 0.5 0.5 

          0 0 1 -1 

The matrix can be made: 

ctr1 <- c(0, 0, 1/2, 1/2) 

ctr2 <- c(0, 0, 1, -1) 

ctr <- rbind(ctr1, ctr2) 

The rbind function is used to concatenate vectors as rows of a matrix. These contrasts can be 

simultaneously tested: 

pushctr <- glht(m18, linfct = ctr) 

summary(pushctr) 

         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lmer(formula = mathach ~ 1 + gradec + parentpushC + peerpushC +  

    (1 + gradec | caseid), data = long, REML = FALSE) 

 

Linear Hypotheses: 

          Estimate Std. Error z value Pr(>|z|)     

ctr1 == 0  0.12089    0.03327   3.633 0.000559 *** 

ctr2 == 0  0.49668    0.07668   6.477 1.87e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Adjusted p values reported -- single-step method) 

The p-values have been controlled for familywise error rates. By default, the single-step approach is used 

for the adjustement. The adjusted p values is computed from the joint normal distribution of the z 

statistics such that the p value represents the probability of getting at least one significant result by chance 

if all z values are the same in all contrasts.
19

  

                                                      
19

 The single-step method is similar to Tukey method in pairwise comparisons in Analysis of Variance. 
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Users may change the method of controlling familywise error rates by specifying the test argument in the 

summary function: 

summary(pushctr, test = adjusted(type = "bonferroni")) 

In this case, the Bonferroni method is used. Researchers can investigate the confidence intervals by the 

confint function. The resulting confidence intervals are simultaneous confidence intervals, which is 

the probability over repeated sampling that all confidence intervals will bracket the population values 

simultanouesly. The confidence intervals can be plotted by the same method shown in the previous 

example. 

The syntax format can be used to specify the contrasts. For the glht function, specify different contrasts 

in the linfct argument as different elements in a vector: 

pushctr2 <- glht(m18, linfct = c("0.5*parentpushC + 0.5*peerpushC = 0", "parentpushC - peerpushC 

= 0")) 

summary(pushctr2, test = adjusted(type = "bonferroni")) 

Example 3: The Difference between Types of Schools 

Researchers may have a hypothesis about the direction of the difference in language scores across types 

of schools, controlling for verbal IQ score. Model 3 is used here. The hypothesis is that the schools Type 

1, 2, and 3 have different language scores average from the schools Type 4 and 5. The hypothesis can be 

written as 

   
        

 
 
     
 

          
        

 
 
     
 

 

where    represents the means of schools type j (j = 1, 2, 3, 4, or 5). 

Note that the means are not the regression coefficients. We cannot write a contrast directly from the 

hypothesis of the means. We know the relations between the means and regression coefficients, however, 

such that       ,           ,           ,           , and           . Thus, the 

hypothesis can be rewritten as 

   
(   )  (       )  (       )

 
 
(       )  (       )

 
   

or 

   
 

 
    

 

 
    

 

 
    

 

 
      

Therefore, the contrast matrix will be 

     
(Intercept) 

    
(IQ_verb) 

    
(denomina2) 

    
(denomina3) 

    
(denomina4) 

    
(denomina5) 

Contrast 0 0 1/3 1/3 -1/2 -1/2 

This contrast can be tested by the glht function: 
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ctr <- matrix(c(0, 0, 1/3, 1/3, -1/2, -1/2), 1) 

typediff <- glht(m3, linfct = ctr) 

summary(typediff) 

         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lmer(formula = langPOST ~ 1 + IQ_verb + denomina + (1 | schoolnr),  

    data = dat, REML = FALSE) 

 

Linear Hypotheses: 

       Estimate Std. Error z value Pr(>|z|) 

1 == 0  -0.6451     0.7536  -0.856    0.392 

(Adjusted p values reported -- single-step method) 

The contrast was not significant. Users are encouraged to specify this contrast by the syntax approach. 

Multivariate Wald Test 

Researchers can test different contrasts simultaneously by multivariate Wald test in the same fashion as in 

F-test in ANOVA. For example, two contrasts in the example of parents and peers influences can be 

tested simultaneously. The restriction in multivariate Wald test is that contrasts need to be linearly 

independent (not require in the multiparameter test). Users can use the rankMatrix function to check 

whether the contrasts are linearly independent. If the rank is equal to the number of contrasts, the 

specified contrasts are linearly independent. Let’s try to check the rank of the contrast specified in 

Example 2:  

ctr1 <- c(0, 0, 1/2, 1/2) 

ctr2 <- c(0, 0, 1, -1) 

ctr <- rbind(ctr1, ctr2) 

rankMatrix(ctr)  

[1] 2 

attr(,"method") 

[1] "tolNorm2" 

attr(,"useGrad") 

[1] FALSE 

attr(,"tol") 

[1] 1.256074e-15 

The rank of this matrix is 2, which is equal to the number of contrasts. Therefore, the contrasts are 

linearly independent, which is good. The multivariate Wald test can be done by the wald.mlm function 

in the rockchalkMultilevel package: 

wald.mlm(m18, ctr) 

       chisq           df            p  

4.909711e+01 2.000000e+00 2.181214e-11 

The first argument is a result from the lmer function. The second argument is the contrast matrix. The 

simultaneous test was significant, 
2
(2) = 49.10, p < .001. Loosely speaking, at least one contrast was 

significant.  

Three-Level Model 
In this section, we will discuss how to analyze data with three levels of nesting. For example, students are 

nested in classrooms and classrooms are nested in schools. We will use the long data set that we have 
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used in the growth curve model section. We used only two-level model (measurements are nested in 

students) and ignored the school level. The school level will be accounted for here. 

Data Structure for Three-Level Model 

The data must be in the long format such that rows represent L1 units. Two variables are needed for L2 

ID and L3 ID. For the lme4 pacakge, the L2 ID from different L3 units must be listed in different 

numbers. For example, the following data are not appropriate: 

L1ID L2ID L3ID DV 

1 1 1 5 

2 1 1 7 

3 2 1 8 

4 2 1 9 

5 1 2 5 

6 1 2 9 

7 2 2 7 

8 2 2 8 

9 1 3 4 

10 1 3 6 

11 2 3 7 

12 2 3 8 

Notice that 1 and 2 are used to represent different L2 units within all three L3 units. The lme4 package 

will assume that the rows coded as 1 (in L2ID) from the first, second, and third L3 units are similar 

(which will be a cross-classified model). The L2 units must be transformed to have different values across 

different L3 units: 

L1ID L2ID L3ID DV 

1 1 1 5 

2 1 1 7 

3 2 1 8 

4 2 1 9 

5 3 2 5 

6 3 2 9 

7 4 2 7 

8 4 2 8 

9 5 3 4 

10 5 3 6 

11 6 3 7 

12 6 3 8 

For example, we will use the posaffect data set. Twenty participants answered the same positive 

affect scale five times a day for 10 days. Thus, measurements (L1) are nested in days (L2) and days are 

nested in participants (L3). The data set can be imported: 

posaffect <- read.csv("posaffect.csv") 

Let’s check Rows 1-10 and 51-60 of the data: 
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posaffect[c(1:10, 51:60), ] 

   id day measure posaffect 

1   1   1       1        53 

2   1   1       2        62 

3   1   1       3        46 

4   1   1       4        57 

5   1   1       5        53 

6   1   2       1        56 

7   1   2       2        68 

8   1   2       3        57 

9   1   2       4        58 

10  1   2       5        67 

51  2   1       1        50 

52  2   1       2        43 

53  2   1       3        38 

54  2   1       4        50 

55  2   1       5        58 

56  2   2       1        53 

57  2   2       2        45 

58  2   2       3        48 

59  2   2       4        39 

60  2   2       5        66 

The id variable is L3 ID (participants). The day variable is L2 ID. The measure variable is L1 ID. 

Notice that at different values of the id variable, the values of the day variable (L2 ID) are duplicated. 

The easy method to create different L2 ID is to use the paste function to concatenate values of L3 ID 

and L2 ID (separated by a space): 

posaffect$l2unit <- paste(posaffect$id, posaffect$day) 

posaffect[c(1:10, 51:60), ]  

   id day measure posaffect l2unit 

1   1   1       1        53    1 1 

2   1   1       2        62    1 1 

3   1   1       3        46    1 1 

4   1   1       4        57    1 1 

5   1   1       5        53    1 1 

6   1   2       1        56    1 2 

7   1   2       2        68    1 2 

8   1   2       3        57    1 2 

9   1   2       4        58    1 2 

10  1   2       5        67    1 2 

51  2   1       1        50    2 1 

52  2   1       2        43    2 1 

53  2   1       3        38    2 1 

54  2   1       4        50    2 1 

55  2   1       5        58    2 1 

56  2   2       1        53    2 2 

57  2   2       2        45    2 2 

58  2   2       3        48    2 2 

59  2   2       4        39    2 2 

60  2   2       5        66    2 2 

Notice that Day 1 for Participant 1 is "1 1" in the l2unit variable and Day 1 for Participant 2 is "2 

1" in the l2unit variable. The l2unit variable will be used to represent L2 ID. 

Model 22: Three-Level Null Model 

The long data set is used here. We will investigate the math achievement scores (mathach) based on 

three levels: measurements, students (caseid), and schools (schoolid). No predictors (including the 

grade variable) will be added in this model. The three-level null model would be 

L1                      (   
 ) 

L2                      (     
( )
) 

L3                      (     
( )
) 
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These notations represent  

      = The math achievement score of Measurement i in Student j in School k 

      = The average of math achievement score across measurements within Student j in School k 

      = The average of math achievement score across students within School k 

      = The average of math achievement scores across schools 

      = The deviation of the math achievement score of Measurement i in Student j in School k 

from the Student j in School k average  

      = The deviation of the math achievement score of Student j in School k from the School k 

average 

      = The deviation of the math achievement score of School k from the grand mean 

    = The language score variance within participants (L1 variance) 

    
( )

 = The language score variance across students but within schools (L2 variance) 

    
( )

 = The language score variance across schools (L3 variance) 

Let’s load the data in the workspace: 

long <- read.csv("mathgrowthclass.csv", header = TRUE, na.strings="-999999") 

I use a different file here. This data set is not different from "mathgrowth.csv" (that we have used 

before) except it contains an additional L3 predictor. 

Next, the model with linear trajectory can be run by the lmer function: 

m22 <- lmer(mathach ~ 1 + (1|caseid) + (1|schoolid), data=long, REML=FALSE) 

summary(m22) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + (1 | caseid) + (1 | schoolid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 142040 142071 -71016   142032  142031 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 caseid   (Intercept) 110.289  10.5019  

 schoolid (Intercept)  34.839   5.9024  

 Residual              55.671   7.4613  

Number of obs: 19041, groups: caseid, 5858; schoolid, 95 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept)  60.0687     0.6257      96 

There are two random effects specification: (1|caseid) and  (1|schoolid).
20

 These notations 

mean that intercepts (1) are random across both participants and schools. The mapping from the formula 

and reduced-form equation would be 

                                                      
20

 The alternative method to specify three-level model by the lme4 package is 

m22 <- lmer(mathach ~ 1 + (1|schoolid/caseid), data=long, REML=FALSE) 

Note that the L3 ID must be listed before the forward slash. This method is not convenient when researchers have 

random L2 predictors across L3 units. Thus, I will illustrate the specification using parentheses in the following 

examples. 
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mathach ~ 1 + (1|caseid) + (1|schoolid) 

       ( )      ( )      ( )       
      

      

 Fixed Effect        +          Random Effect 

The intraclass correlations (the proportion of variances explained at each level) can be computed by the 

steps similar to those in Model 0: 

1. Save the summary of the multilevel output. 

out22 <- summary(m22) 

2. Put @REmat after the summary output to get the random effect matrix 

ranef22 <- out22@REmat 

ranef22 

  Groups     Name          Variance  Std.Dev.  

 "caseid"   "(Intercept)" "110.289" "10.5019" 

 "schoolid" "(Intercept)" " 34.839" " 5.9024" 

 "Residual" ""            " 55.671" " 7.4613" 

3. Extract appropriate values for    
( )

 (tau3),    
( )

 (tau2), and    (sigma2). Use the 

as.numeric function to change the string format to number: 

tau3 <- as.numeric(ranef22[1, 3]) 

tau2 <- as.numeric(ranef22[2, 3]) 

sigma2 <- as.numeric(ranef22[3, 3]) 

4. Compute intraclass correlation at the school level,       
( )
 (   

( )
    

( )
   ): 

icc3 <- tau3/(tau3 + tau2 + sigma2) 

icc3 

[1] 0.5492507 

5. Compute intraclass correlation at participant level,       
( )
 (   

( )     
( )
   ): 

icc2 <- tau2/(tau3 + tau2 + sigma2) 

icc2 

[1] 0.1735019 

Readers may try to run the null model of the positive affect from the posaffect data set. Then, 

compare the results when the day variable and the l2id variable are used for L2 ID. Note that the 

correct model should have the l2id variable as L2 ID. You will see that two models provide totally 

different values. 

Model 23: Three-Level Linear Trajectory 

In this model, the change of math achievement scores (mathach) across grade (grade) is modeled. 

Measurements are nested in students (caseid) and students are nested in schools (schoolid). This 
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model is similar to Model 15 but the schoolid variable is accounted for. First, the grade variable is 

centered at Grade 7 to make the intercepts meaningful: 

long$gradec <- long$grade – 7 

The intercepts and slopes (linear change) are random across students and schools. The three-level linear 

growth model would be  

L1               (      )             (   
 ) 

L2                

               [
    
    

]  ([
 
 
]  [
   
( )

   
( )

   
( )
] ) 

L3                

               [
    
    

]  ([
 
 
]  [
   
( )

   
( )

   
( )
] ) 

These notations should represent  

      = The math achievement score of Measurement i in Student j in School k 

      = The grade that the Measurement i in Student j in School k was observed 

      = The math achievement score of Student j in School k at Grade 7 

      = The expected change in math achievement score when grade increases by 1 for Student j 

in School k, which is the rate of change for Student j in School k 

      = The average of math achievement scores in Grade 7 across students within School k 

      = The average rate of change in math achievement scores across students within School k 

      = The average of math achievement scores in Grade 7 across schools 

      = The average rate of change in math achievement scores across schools 

      = The difference between the actual math achievement score of Measurement i in Student j in 

School k and the expected score of Student j in School k at a given grade level 

      = The deviation of the actual math achievement score of Student j in School k at Grade 7 

from the average math achievement score at Grade 7 across students within School k 

      = The deviation of the rate of change of Student j in School k from the average rate of 

change across students within School k 

      = The deviation of the actual math achievement score of School k at Grade 7 from the 

average math achievement score at Grade 7 across schools 

      = The deviation of the rate of change of School k from the average rate of change across 

schools 

    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

    
( )

 = The variance of math achievement scores at Grade 7 within the student level (partialled out 

the school variances) 

    
( )

 = The variance of the rate of change in math achievement score within the student level 

(partialled out the school variances) 

    
( )

 = The covariance between the math achievement score at Grade 7 (initial status) and the rate 

of change within the student level 
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    
( )     

( ) √   
( )
   
( )

⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

    
( )

 = The variance of math achievement scores at Grade 7 across schools 

    
( )

 = The variance of the rate of change in math achievement score across schools 

    
( )

 = The covariance between the math achievement score at Grade 7 (initial status) and the rate 

of change at the school level 

    
( )
    

( ) √   
( )
   
( )

⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

Next, the model with linear trajectory can be run by the lmer function: 

m23 <- lmer(mathach ~ 1 + gradec + (1 + gradec|caseid) + (1 + gradec|schoolid), data=long, 

REML=FALSE) 

summary(m23) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + (1 + gradec | caseid) + (1 + gradec |      schoolid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 129817 129888 -64899   129799  129801 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr    

 caseid   (Intercept) 72.67928 8.52521          

          gradec       2.11129 1.45303  0.336   

 schoolid (Intercept) 25.96207 5.09530          

          gradec       0.52503 0.72459  -0.198  

 Residual             20.36538 4.51280          

Number of obs: 19041, groups: caseid, 5858; schoolid, 95 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 51.06746    0.55463   92.07 

gradec       3.33156    0.08828   37.74 

 

Correlation of Fixed Effects: 

       (Intr) 

gradec -0.258 

The gradec variable is included in both parentheses to represent the random effects at both student and 

school levels. The mapping from the formula and reduced-form equation would be 

mathach ~ 1 + gradec + (1 + gradec|caseid) + (1 + gradec| schoolid) 

        ( )      (     )      ( )      (     )      ( )      (     )       
      

      

                                       Fixed Effect                             +                           Random Effect 

The linear trajectory was significant, z = 37.74, p < .001, such that, when the grade increases by 1, the 

math achievement score increases by 3.33 points on average. Interestingly, the correlations between the 

initial status (math achievement at Grade 7) and rate of change were positive (.34) at student level but 

negative (-.20) at school level. Within a school, if students had higher initial status, students tended to 

have higher growth. Across schools, however, schools with a higher initial status tended to have slower 

growth. 

Readers are encouraged to compare the result with Model 15. Notice the change in the parameter estimate 

and t value of the fixed effects and the variances of random effects at the student level. 
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Model 24: Time-Invariant Covariate in Three-Level Model 

In this model, the linear change of math achievement scores (mathach) across grade (grade) is 

predicted by gender (time-invariant covariate), which is similar to Model 17. However, the school level is 

accounted for here. In addition, the gender differences in initial status (math achievement score at Grade 

7) and the gender differences in linear trajectory are random across schools. The three-level growth curve 

model with L2 covariate would be 
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These notations should represent (the blue lines indicate that the meanings changed from Model 23) 

      = The math achievement score of Measurement i in Student j in School k 

      = The grade that the Measurement i in Student j in School k was observed 

     = The gender of Student j in School k (1 = Male, 0 = Female) 

      = The math achievement score of Student j in School k at Grade 7 

      = The expected change in math achievement score when grade increases by 1 for Student j 

in School k, which is the rate of change for Student j in School k 

      = The average of math achievement scores in Grade 7 across all female students within 

School k 

      = The average rate of change in math achievement scores across all female students within 

School k 

      = The gender difference in the average of math achievement scores in Grade 7 within 

School k 

      = The gender difference in the rate of change within School k 

      = The average of math achievement scores in Grade 7 across all female students across 

schools 

      = The average rate of change in math achievement scores across all female students across 

schools 

      = The average gender difference in math achievement scores in Grade 7 across schools 

      = The average gender difference in the rate of change across schools 

      = The difference between the actual math achievement score of Measurement i in Student j in 

School k and the expected score of Student j in School k at a given grade level 

      = The deviation of the actual math achievement score of Student j in School k at Grade 7 

from the average math achievement score at Grade 7 across students with the same gender within 

School k 

      = The deviation of the rate of change of Student j in School k from the average rate of 

change across students with the same gender within School k 
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      = The deviation of the actual female math achievement score of School k at Grade 7 from 

the average female math achievement score at Grade 7 across schools 

      = The deviation of the female rate of change of School k from the average female rate of 

change across schools 

      = The deviation of the gender difference in math achievement score of School k in Grade 7 

from the average gender defferences of math achievement score in Grade 7 across schools 

      = The deviation of the gender difference in rate of change of School k from the average 

gender difference in rate of change across schools 

    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

    
( )

 = The residual variance of math achievement scores at Grade 7 (initial status) within the 

student level (controlling for schools and gender) 

    
( )

 = The residual variance of the rate of change in math achievement score within the student 

level (controlling for schools and gender) 

    
( )

 = The residual covariance between the math achievement score at Grade 7 (initial status) and 

the rate of change within the student level (controlling for schools and gender) 

    
( )
    

( ) √   
( )
   
( )

⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

    
( )

 = The variance of female math achievement scores at Grade 7 across schools 

    
( )

 = The variance of the female rate of change in math achievement score across schools 

    
( )

 = The variance of the gender difference in math achievement scores at Grade 7 across 

schools 

    
( )

 = The variance of the gender difference in rate of change across schools 

    
( )

 = The covariance between female math achievement score at Grade 7 and female rate of 

change at the school level 

    
( )

 = The covariance between female math achievement score at Grade 7 and the gender 

difference in math achievement scores at Grade 7 at the school level 

    
( )

 = The covariance between female rate of change and the gender difference in math 

achievement scores at Grade 7 at the school level 

    
( )

 = The covariance between female math achievement score at Grade 7 and the gender 

difference in rate of change at the school level 

    
( )

 = The covariance between female rate of change and the gender difference in rate of change 

at the school level 

    
( )

 = The covariance between the gender difference in math achievement scores at Grade 7 and 

the gender difference in rate of change at the school level 

    
( )
    

( ) √   
( )
   
( )

⁄  (where      0, 1, 2, or 3 and    ) = The covariance mentioned above in 

the correlation scale (from -1 to 1) 

Next, the model with linear trajectory can be run by the lmer function: 
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m24 <- lmer(mathach ~ 1 + gradec + gender + gradec*gender + (1 + gradec|caseid) + (1 + gradec + 

gender + gradec*gender|schoolid), data=long, REML=FALSE) 

summary(m24) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + gender + gradec * gender + (1 + gradec |      caseid) + (1 + gradec + gender + 

gradec * gender | schoolid)  

   Data: long  

    AIC    BIC logLik deviance REMLdev 

 129774 129915 -64869   129738  129744 

Random effects: 

 Groups   Name              Variance  Std.Dev. Corr                  

 caseid   (Intercept)       71.494814 8.45546                        

          gradec             2.071278 1.43919  0.349                 

 schoolid (Intercept)       20.438957 4.52095                        

          gradec             0.358130 0.59844  -0.088                

          gendermale         5.208332 2.28218   0.416 -0.611         

          gradec:gendermale  0.082743 0.28765  -0.007  0.991 -0.505  

 Residual                   20.361267 4.51235                        

Number of obs: 19041, groups: caseid, 5858; schoolid, 95 

 

Fixed effects: 

                  Estimate Std. Error t value 

(Intercept)       51.47943    0.51408  100.14 

gradec             3.19418    0.08216   38.88 

gendermale        -0.85434    0.37284   -2.29 

gradec:gendermale  0.29289    0.07662    3.82 

 

Correlation of Fixed Effects: 

            (Intr) gradec gndrml 

gradec      -0.171               

gendermale   0.046 -0.241        

grdc:gndrml  0.037 -0.032 -0.345 

The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + gradec + gender + gradec*gender  

  + (1 + gradec|caseid) 

  + (1 + gradec + gender + gradec*gender|schoolid) 

        ( )      (     )              (     )    

                ( )      (     )  

                ( )      (     )              (     )         

The gender difference in the linear trajectory was significant, z = 3.82, p < .001. Again, the 

plotSlopes.mlm and testSlopes.mlm function of the rockchalkMultilevel package can 

be used to visualize the interaction: 

library(rockchalkMultilevel) 

simpleSlope24 <- plotSlopes.mlm(m24, "gradec", "gender") 

Fixed Effect 

Random Effect 
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testSlopes.mlm(simpleSlope24) 

These are the straight-line "simple slopes" of the variable gradec   

 for the selected moderator values.  

                "gender"    slope Std. Error  z value      Pr(>|z|) 

female            gradec 3.194183 0.08216338 38.87600  0.000000e+00 

male   gradec:gendermale 3.487068 0.11055343 31.54193 2.313728e-218 

The linear trajectories for both males and females were significant; however, the magnitude of gender 

difference on the linear trajectories was trivial according to the graph.  

We can simultaneously test whether the gender difference in initial status and linear trajectory were 

random across schools. The reference model with fixed effect of gender differences on initial status and 

linear trajectory was built and compared with the current model: 

m24a <- lmer(mathach ~ 1 + gradec + gender + gradec*gender + (1 + gradec|caseid) + (1 + 

gradec|schoolid), data=long, REML=FALSE) 

anova(m24a, m24) 

Data: long 

Models: 

m24a: mathach ~ 1 + gradec + gender + gradec * gender + (1 + gradec |  

m24a:     caseid) + (1 + gradec | schoolid) 

m24: mathach ~ 1 + gradec + gender + gradec * gender + (1 + gradec |  

m24:     caseid) + (1 + gradec + gender + gradec * gender | schoolid) 

     Df    AIC    BIC logLik  Chisq Chi Df Pr(>Chisq)     

m24a 11 129793 129879 -64885                              

m24  18 129774 129915 -64869 32.803      7  2.882e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The random effects of gender differences on initial status and linear trajectory across schools were 

significant, 2
(7) = 32.80, p < .001. Thus, although the magnitude of gender difference in linear 

trajectories was trivial on average, the gender difference was varied across schools. That is, some schools 
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had higher rates of linear change for males and other schools had higher rates of linear change for 

females. 

Model 25: Level-3 Time-Invariant Covariate  

In this model, the linear change of math achievement scores (mathach) across grade (grade) is 

predicted by school’s cohort size (Level 3 time-invariant covariate). The school’s cohort size 

(cohortsize) was centered at its grand mean. The three-level growth curve model with L3 covariate 

would be 
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These notations should represent (the blue lines indicate that the meanings changed from Model 23)  

      = The math achievement score of Measurement i in Student j in School k 

      = The grade that the Measurement i in Student j in School k was observed 

    = The cohort size in School k  

      = The math achievement score of Student j in School k at Grade 7 

      = The expected change in math achievement score when grade increases by 1 for Student j 

in School k, which is the rate of change for Student j in School k 

      = The average of math achievement scores in Grade 7 across students within School k 

      = The average rate of change in math achievement scores across students within School k 

      = The expected school math achievement scores in Grade 7 when the cohort size equals the 

average cohort size across schools 

      = The expected school rate of change in math achievement scores when the cohort size 

equals the average cohort across schools 

      = The expected change in school math achievement score in Grade 7 when cohort size 

increases by 1  

      = The expected change in school rate of change when cohort size increases by 1 

      = The difference between the actual math achievement score of Measurement i in Student j in 

School k and the expected score of Student j in School k at a given grade level 

      = The deviation of the actual math achievement score of Student j in School k at Grade 7 

from the average math achievement score at Grade 7 across students within School k 

      = The deviation of the rate of change of Student j in School k from the average rate of 

change across students within School k 

      = The deviation of the actual math achievement score of School k at Grade 7 from the 

predicted school math achievement score at Grade 7 (given cohort size) 

      = The deviation of the rate of change of School k from the predicted school rate of change 

(given cohort size) 
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    = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

    
( )

 = The variance of math achievement scores at Grade 7 within the student level (partialled out 

the school variances) 

    
( )

 = The variance of the rate of change in math achievement score within the student level 

(partialled out the school variances) 

    
( )

 = The covariance between the math achievement score at Grade 7 (initial status) and the rate 

of change within the student level 

    
( )     

( ) √   
( )
   
( )

⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

    
( )

 = The residual variance of math achievement scores at Grade 7 across schools controlling for 

cohort size 

    
( )

 = The residual variance of the rate of change in math achievement score across schools 

controlling for cohort size 

    
( )

 = The residual covariance between the math achievement score at Grade 7 (initial status) and 

the rate of change at the school level controlling for cohort size 

    
( )
    

( ) √   
( )
   
( )

⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

Before analyzing data, the cohortsize variable needs to be centered at its grand mean: 

long$cohortsizeC <- long$cohortsize - mean(long$cohortsize, na.rm = TRUE) 

Next, the model with linear trajectory can be run by the lmer function: 

m25 <- lmer(mathach ~ 1 + gradec + cohortsizeC + gradec*cohortsizeC + (1 + gradec|caseid) + (1 + 

gradec|schoolid), data=long, REML=FALSE) 

summary(m25) 

Linear mixed model fit by maximum likelihood  

Formula: mathach ~ 1 + gradec + cohortsizeC + gradec * cohortsizeC + (1 +      gradec | caseid) + (1 + gradec | 

schoolid)  

   Data: long  

   AIC   BIC logLik deviance REMLdev 

 69023 69103 -34501    69001   69028 

Random effects: 

 Groups   Name        Variance Std.Dev. Corr    

 caseid   (Intercept) 69.97730 8.36524          

          gradec       2.00823 1.41712  0.400   

 schoolid (Intercept) 26.55133 5.15280          

          gradec       0.62167 0.78846  -0.303  

 Residual             20.79327 4.55996          

Number of obs: 10121, groups: caseid, 3085; schoolid, 64 

 

Fixed effects: 

                     Estimate Std. Error t value 

(Intercept)        50.8903548  0.7057707   72.11 

gradec              3.3798438  0.1216957   27.77 

cohortsizeC        -0.0026315  0.0012201   -2.16 

gradec:cohortsizeC  0.0004707  0.0003407    1.38 

 

Correlation of Fixed Effects: 

            (Intr) gradec chrtsC 

gradec      -0.356               

cohortsizeC  0.015 -0.007        

grdc:chrtsC  0.000  0.016 -0.360 
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The mapping from the formula and reduced-form equation would be 

langPOST ~ 1 + gradec + cohortsizeC + gradec*cohortsizeC  

  + (1 + gradec|caseid) 

  + (1 + gradec|schoolid) 

        ( )      (     )              (     )    

                ( )      (     )  

                ( )      (     )       

The linear growth was not significantly moderated by cohort size, z = 1.38, p = .17. Thus, the interaction 

will not be probed. The schools with higher cohort size, however, significantly had lower average math 

achievement scores, z = -2.16, p = .031. Note that this model can be compared with Model 23. Readers 

are encouraged to implement and interpret the deviance test between this model and Model 23. 

Multivariate Model 
In this part, multiple dependent variables are predicted by independent variables simultaneously. Rather 

than running models for each dependent variable separately, researchers can investigate the covariance 

between dependent variables at each level. Furthermore, the statistical power is higher especially for 

correlated dependent variables. The R code for multivariate models is much more complicated, however. 

Restructuring Data for Multivariate Models 

Multivariate model requires a special format of data structure. In this section, we will use the long 

dataset again: 

long <- read.csv("mathgrowth.csv", header = TRUE, na.strings="-999999") 

In this data set, rows represent L1 units. Before starting restructure data for multivariate models, users 

should transform predictors (e.g., centering or changing to factor format) for their future analyses at this 

point. For this data set, the grade variable will be centered at Grade 7 and the gender variable will be 

changed into the factor format for later uses: 

long$gradec <- long$grade - 7 

long$gender <- factor(long$gender, labels=c("female", "male")) 

As another requirement, the data set must have a variable representing L1 ID and all rows must have 

distinct L1 ID values. The easiest way to create such ID variable is to create a variable of row index: 

long <- data.frame(long, obs = 1:nrow(long)) 

The obs variable is attached to the long data set, which is simply a sequence from one to the total 

number of rows. 

In this section, we will use two dependent variables: parent encouragement in studying math 

(parentpush) and peer encouragement in studying math (peerpush). These two variables are listed 

in two separate columns. For example, 

L1ID L2ID DV1 DV2 

Fixed Effect 

Random Effect 
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1 1 1 5 

2 1 4 7 

3 2 2 5 

4 2 3 9 

5 3 1 4 

6 3 3 6 

This data set must be transformed such that one column represents both dependent variables. In other 

words, two (or more) dependent variables are stacked into one dependent variable. Each row represents 

data from one dependent variable of one L1 unit. That is, each L1 unit has multiple rows in the data set to 

represent each dependent variable. We can say that dependent variables are listed as another level lower 

than Level 1. Then, one variable are created to indicate which rows represent the first and the second 

dependent variables. For example, the previous table should be transformed as 

L1ID L2ID DVS IND 

1 1 1 DV1 

2 1 4 DV1 

3 2 2 DV1 

4 2 3 DV1 

5 3 1 DV1 

6 3 3 DV1 

1 1 1 DV2 

2 1 4 DV2 

3 2 2 DV2 

4 2 3 DV2 

5 3 1 DV2 

6 3 3 DV2 

where DVS represents the stacked dependent variable values and IND represents the dependent variable 

each row represents. To transform the data in such format, the melt function in the reshape2 package 

will be used.  

library(reshape2) 

dvvars <- c("parentpush", "peerpush") 

othervars <- setdiff(colnames(long), dvvars) 

long2 <- melt(long, id.vars = othervars, measure.vars = dvvars) 

The dvvars object is the names of dependent variables. The othervars object is the names of other 

variables, which is created by the difference between all variable names and dependent variable names 

(by the setdiff function). In the melt function, the first argument is a target data set. The names of 

dependent variables are put in the measure.vars argument. The names of other variables are put in 

the id.vars argument. The resulting data can be viewed: 

head(long2, 10) 

   caseid schoolid grade mathach likemath gender race gradec obs   variable value 

1       1      101     7   70.05        1   male    3      0   1 parentpush     2 

2       1      101     8   69.23        1   male    3      1   2 parentpush     2 

3       1      101     9   71.07        1   male    3      2   3 parentpush     2 

4       1      101    10   78.52        1   male    3      3   4 parentpush     2 
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5       1      101    11   81.66        1   male    3      4   5 parentpush     2 

6       1      101    12   78.77        1   male    3      5   6 parentpush     2 

7       2      101     7   59.36        3   male    3      0   7 parentpush     2 

8       2      101     8   65.20        3   male    3      1   8 parentpush     0 

9       2      101     9   68.92        3   male    3      2   9 parentpush     1 

10      2      101    10   72.06        3   male    3      3  10 parentpush     2 

Readers can check the number of rows in the old and new data sets. The number of rows should be 

doubled in the new data set. Note that the variable variable is the name of dependent variables in each 

row and the value variable is the stacked dependent variables. Finally, two dummy variables are created 

to represent the indicators of each dependent variable: 

long2$constparent <- as.numeric(long2$variable == "parentpush") 

long2$constpeer <- as.numeric(long2$variable == "peerpush") 

Model 26: Multivariate Null Model 

Parent encouragement in studying math (parentpush) and peer encouragement in studying math 

(peerpush) will be used as dependent variables. We will run multivariate null model to find the 

variances and covariance of both variables at measurement and student levels. The multivariate null 

model would be 
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These notations represent  

      = The parent encouragement in studying math of Measurement i in Student j  

      = The peer encouragement in studying math of Measurement i in Student j  

     = The average of parent encouragement of Student j 

     = The average of peer encouragement of Student j 

     = The average of parent encouragement across students 

     = The average of peer encouragement across students 

      = The deviation of the parent encouragement of Measurement i in Student j from the Student 

j average  

      = The deviation of the peer encouragement of Measurement i in Student j from the Student j 

average  

     = The deviation of the parent encouragement of Student j from the grand mean 

     = The deviation of the peer encouragement of Student j from the grand mean 

   
  = The parent encouragement variance within participants (L1 variance) 

   
  = The peer encouragement variance within participants (L1 variance) 

     = The covariance between parent encouragement and peer encouragement within 

participants, which is the covariance between both scores across measurements within a student 

    
( )     √  

   
 ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

     = The parent encouragement variance across participants (L2 variance) 

     = The peer encouragement variance across participants (L2 variance) 
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     = The covariance between parent encouragement and peer encouragement across participants 

    
( )
    √      ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

The formulas listed above with two dependent variables can be condensed into a formula with one 

dependent variable with the help of dummy variables:  

L1  ̃     (   )    (   )   ̃    ̃    (   ̃
  ) 

where 

  ̃   = The stacked values of dependent variables  

    = A dummy variable where 1 represents rows from parent encouragement and 0 represents 

rows from peer encouragement  

    = A dummy variable where 1 represents rows from peer encouragement and 0 represents rows 

from parent encouragement  

  ̃   = The stacked L1 residuals 

  ̃  = The variance of stacked L1 residuals, which the error structure is based on different 

dependent variables 

The reduced form of this formula would be 

                                

Notice that this model does not have the intercept term (no fixed effect multiplied by just 1). All 

regression coefficients are multiplied by dummy variables.  

Because L1 residuals have different variances for each dependent variable, the lme4 package cannot be 

used. The lme function from the nlme package is used instead: 

m26 <- lme(value ~ 0 + constparent + constpeer, data = long2, 

random = ~0 + constparent + constpeer | caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit") 

summary(m26) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long2  

       AIC      BIC    logLik 

  116863.4 116932.4 -58423.69 

 

Random effects: 

 Formula: ~0 + constparent + constpeer | caseid 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev    Corr   

constparent 0.5409066 cnstpr 

constpeer   0.4687826 0.23   

Residual    0.8717789        

 

Correlation Structure: General 

 Formula: ~1 | caseid/obs  

 Parameter estimate(s): 

 Correlation:  

  1     

2 0.245 

Variance function: 
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 Structure: Different standard deviations per stratum 

 Formula: ~1 | variable  

 Parameter estimates: 

parentpush   peerpush  

  1.000000   1.098731  

Fixed effects: value ~ 0 + constparent + constpeer  

                Value   Std.Error    DF   t-value p-value 

constparent 1.4054332 0.009593400 35335 146.50000       0 

constpeer   0.8088264 0.009252692 35335  87.41526       0 

 Correlation:  

          cnstprn 

constpeer 0.227   

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-2.29442504 -0.67953407 -0.02575005  0.50227314  3.42114375  

 

Number of Observations: 41280 

Number of Groups: 5944 

The first argument is the formula of fixed effects. Because no intercept is used, 0 is used instead of 1. In 

the random argument, the coefficients of two dummy variables, which are     and    , are varied across 

students. Again, 0 is used because the model does not have intercepts. The weight argument is 

specified such that the variances are equal within the same value of dependent variables (the variable 

variable). Different dependent variables can have different L1 residual variances.  

Specifying the correlation argument is tricky. This caseid/obs expression means all L1 ID 

(measurement ID) within L2 ID (student ID). Thus, corSymm(form = ~ 1 | caseid/obs) 

means the correlation structure is symmetric (corSymm) within any L1 units (~ 1 | caseid/obs). 

Because there are two rows representing different dependent variables within a L1 unit, the correlation 

represents the relationship between two dependent variables within L1 units.
21

 

The mapping from the formula and reduced-form equation would be 

formula = value ~ 0 + constparent + constpeer  

random = ~ 0 + constparent + constpeer | caseid 

                                
      

      

 Fixed Effect        +          Random Effect 

From this output, the correlation between two variables at measurement and student levels were .245 (in 

the Correlation Structure: General section) and .230 (in the Random effects section), 

respectively. The L1 residual standard deviation of peer encouragement was 1.099 times higher than the 

L1 residual standard deviation of parent encouragement (in the Variance function section). 

                                                      
21

 The alternative code for this model is 

m26 <- lme(value ~ 0 + variable, data = long2, 

random = ~0 + variable | caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit") 

summary(m26) 

Because the variable variable is in a factor format, 0 + variable will create two dummy variables for each 

group (which are similar to constparent and constpeer). 
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Researchers may wish to calculate intraclass correlations (ICC) for both dependent variables. Here are the 

steps to calculate ICC: 

1. Extract the variances of random effects and residual variance by the VarCorr function: 

allvar <- VarCorr(m26) 

allvar 

caseid = pdLogChol(0 + constparent + constpeer)  

            Variance  StdDev    Corr    

constparent 0.2925799 0.5409066 cnstprn 

constpeer   0.2197571 0.4687826 0.23    

Residual    0.7599985 0.8717789 

2. Get the L1 residual standard deviation of the first variable: 

dv1sd <- as.numeric(allvar[3, 2]) 

The as.numeric function is needed to transform the text format to the number format. 

3. Compute the L1 residual standard deviation of all variables: 

l1sd <- c(dv1sd, dv1sd * coef(m26$modelStruct$varStruct, unconstrained = FALSE)) 

The code used to find the ratio of standard deviations between the first and the rest of dependent 

variables are similar to the scripts provided in Model 19.  

4. Compute the L1 residual variance of all variables: 

l1var <- l1sd^2 

5. Get the L2 variances of all variables: 

l2var <- as.numeric(allvar[1:2, 1]) 

6. Compute ICC of all variables: 

icc <- l2var / (l1var + l2var) 

icc 

           peerpush  

0.2779650 0.1932381 

The intraclass correlations of parent and peer encouragement are .28 and .19, respectively. 

The average of parent and peer encouragement across students were 1.41 and 0.81, respectively. We can 

compare whether these averages are different. There are two options for this comparison: multi-parameter 

contrast and deviance test. The multi-parameter contrast can be implemented by the glht function from 

the multcomp package: 

library(multcomp) 

ctr <- glht(m26, "constparent - constpeer = 0") 

summary(ctr) 

         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lme.formula(fixed = value ~ 0 + constparent + constpeer, data = long2,  
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    random = ~0 + constparent + constpeer | caseid, correlation = corSymm(form = ~1 |  

        caseid/obs), weights = varIdent(form = ~1 | variable),  

    method = "ML", na.action = "na.omit") 

 

Linear Hypotheses: 

                             Estimate Std. Error z value Pr(>|z|)     

constparent - constpeer == 0  0.59661    0.01172   50.91   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Adjusted p values reported -- single-step method) 

The average of parent encouragement was significantly higher than peer encouragement by 0.60 points, z 

= 50.9, p < .001.  

Another way is to compare the levels of parent and peer encouragements by deviance test of nested 

models. We need the reference model that the fixed effects of parent and peer encouragement are equal, 

       . If we create this model, the reduced-form formula would be 

                                (     )                    

Because         in all cases (the row is either parent or peer encouragement), our reference model 

with equal fixed effects of both dependent variables would be 

                        

which can be translated into the R script: 

m26a <- lme(value ~ 1, data = long2, 

random = ~0 + constparent + constpeer | caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit") 

The formula of the reference model has only the intercept (1) because the intercepts of both dependent 

variables are equal (   ). This model can be compared with the original model by the deviance test: 

anova(m26, m26a) 

     Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

m26      1  8 116863.4 116932.4 -58423.69                         

m26a     2  7 118994.7 119055.1 -59490.35 1 vs 2 2133.333  <.0001 

Similar to the multi-parameter contrast, the difference between the averages of parent and peer 

encouragement was significant, 2
(1) = 2133.33, p < .001.  

The multi-parameter contrast can be used to compare fixed effects but not to compare random effects. 

The deviance test can be used to compare whether the random effects of both dependent variables are 

identical,        . The reduced-form formula can be transformed as 

                                               (     )     

                     

where        . The R scipt for this reference model would be 

m26b <- lme(value ~ 0 + constparent + constpeer, data = long2, 
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random = ~1 | caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit") 

You can see that the random argument is defined by the intercept, 1, which represents     only. This 

model can be compared with the original model by the deviance test: 

anova(m26, m26b) 

     Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

m26      1  8 116863.4 116932.4 -58423.69                         

m26b     2  6 118241.1 118292.9 -59114.56 1 vs 2 1381.745  <.0001 

The random effects of parent and peer encouragements are significantly different, 2
(2) = 1381.75, p < 

.001. I think that this comparison is nonsense. The reference model says that random effect values are 

identical in each model. For example, in Student 1, if the random effect of parent encouragement,    , is 

2, the random effect of peer encouragement,    , is 2 too. Because these values are based on totally 

different dependent variables, constraining two random effects of two different dependent varaibles to be 

equal is nonsense. I will not mention this test further in this section. 

Model 27: Multivariate Linear Growth Model 

The linear trajectories of both parent encouragement (parentpush) and peer encouragement 

(peerpush) across grades are modeled. The grade variable is centered at Grade 7, which has been 

done during the restructuring process. The multivariate linear growth model would be 

L1             (     )       

            (     )       
[
    
    

]   ([
 
 
]  [

  
 

     
 ] ) 

L2             

            

            

            

[

   
   
   
    

]   

(

 [

 
 
 
 

]  

[
 
 
 
   
      
         
             ]

 
 
 

)

  

These notations represent (the blue lines indicate that the meanings changed from Model 26)   

      = The parent encouragement in studying math of Measurement i in Student j  

      = The peer encouragement in studying math of Measurement i in Student j  

     = The grade that the Measurement i in Student j was observed 

     = The expected parent encouragement of Student j at Grade 7 

     = The expected change in parent encouragement when grade increases by 1 for Student j, 

which is the rate of change in parent encouragement for Student j 

     = The expected peer encouragement of Student j at Grade 7 

     = The expected change in peer encouragement when grade increases by 1 for Student j, which 

is the rate of change in peer encouragement for Student j 

     = The average of parent encouragement in Grade 7 across students 

     = The average rate of change in parent encouragement across students 

     = The average of peer encouragement in Grade 7 across students 

     = The average rate of change in peer encouragement across students 
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      = The difference between the actual parent encouragement score of Measurement i in 

Student j and the expected score of Student j at a given grade level 

      = The difference between the actual peer encouragement score of Measurement i in Student j 

and the expected score of Student j at a given grade level 

     = The deviation of the actual parent encouragement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students 

     = The deviation of the rate of change in parent encouragement of Student j from the average 

rate of change across students  

     = The deviation of the actual peer encouragement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students 

     = The deviation of the rate of change in peer encouragement of Student j from the average 

rate of change across students  

   
  = The parent encouragement score residual variance within the measurement level (L1 

residual variance) controlling for grade 

   
  = The peer encouragement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

     = The residual covariance between parent and peer encouragement within participants 

controlling for grade 

    
( )
    √  

   
 ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

     = The variance of parent encouragement scores at Grade 7 across students  

     = The variance of the rate of change in parent encouragement score across students 

     = The variance of peer encouragement scores at Grade 7 across students  

     = The variance of the rate of change in peer encouragement score across students 

     = The covariance between the parent encouragement score at Grade 7 and the rate of change 

in parent encouragement 

     = The covariance between the parent and peer encouragement scores at Grade 7  

     = The covariance between the parent encouragement score at Grade 7 and the rate of change 

in peer encouragement 

     = The covariance between the rate of change in parent encouragement and the peer 

encouragement score at Grade 7 

     = The covariance between the rate of change in parent encouragement and the rate of change 

in peer encouragement 

     = The covariance between the peer encouragement score at Grade 7 and the rate of change in 

peer encouragement 

        √      ⁄  (where      0, 1, 2, or 3 and    ) = The covariance mentioned above in the 

correlation scale (from -1 to 1) 

The formulas listed above with two dependent variables can be condensed into a formula with one 

dependent variable with the help of dummy variables:  

L1   ̃     (       (     ))    (       (     ))   ̃    ̃    (   ̃
  ) 

where notations are defined in Model 26. 
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The model can be analyzed by the lme function from the nlme package: 

m27 <- lme(value ~ 0 + constparent + constparent:gradec + constpeer + constpeer:gradec,  

data = long2, 

 random = ~0 + constparent + constparent:gradec + constpeer + constpeer:gradec| caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit",  

 control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

summary(m27) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long2  

       AIC      BIC    logLik 

  112866.7 113013.4 -56416.35 

 

Random effects: 

 Formula: ~0 + constparent + constparent:gradec + constpeer + constpeer:gradec | caseid 

 Structure: General positive-definite, Log-Cholesky parametrization 

                   StdDev    Corr                   

constparent        0.7069079 cnstprn constpr cnstp: 

constpeer          0.6833550  0.376                 

constparent:gradec 0.1086271 -0.528  -0.271         

gradec:constpeer   0.1329360 -0.187  -0.701   0.265 

Residual           0.7594011                        

 

Correlation Structure: General 

 Formula: ~1 | caseid/obs  

 Parameter estimate(s): 

 Correlation:  

  1    

2 0.12 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | variable  

 Parameter estimates: 

parentpush   peerpush  

  1.000000   1.168075  

Fixed effects: value ~ 0 + constparent + constparent:gradec + constpeer + constpeer:gradec  

                        Value   Std.Error    DF   t-value p-value 

constparent         2.0305157 0.015211684 35333 133.48395       0 

constpeer           1.2778746 0.016440875 35333  77.72546       0 

constparent:gradec -0.2220791 0.004016936 35333 -55.28569       0 

gradec:constpeer   -0.1653800 0.004564085 35333 -36.23508       0 

 Correlation:  

                   cnstprn constpr cnstp: 

constpeer           0.236                 

constparent:gradec -0.762  -0.165         

gradec:constpeer   -0.150  -0.825   0.167 

 

Standardized Within-Group Residuals: 

       Min         Q1        Med         Q3        Max  

-2.7390889 -0.6244660 -0.1355851  0.5876161  3.8055511  

 

Number of Observations: 41280 

Number of Groups: 5944 

The script is similar to Model 26.
22

 The differences are in the formula and the random arguments. The 

gradec variable is added to those formulas via the constparent:gradec and 

                                                      
22

 The alternative script is 

m27 <- lme(value ~ 0 + variable + variable:gradec, data = long2, 

 random = ~0 + variable + variable:gradec | caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 
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constpeer:gradec terms, which are corresponding to      (      ) and      (      ). The : 

operator is used to create interaction. Note that the * operator cannot be used here because the lower-

order terms must not be included.
23

 The control argument is specified here because the default number 

of iterations is not enough to reach the convergent result. Please see further details in the help page (by 

typing ?lmeControl in the R console). 

The mapping from the formula and reduced-form equation would be 

formula = value ~ 0 + constparent + constparent:gradec  

  + constpeer + constpeer:gradec  

random = ~ 0 + constparent + constparent:gradec  

  + constpeer + constpeer:gradec | caseid 

               (     )             (     ) 

                      (     )             (     )      

The parent scores were significantly declined across grades, z = -55.29, p < .001, as well as peer 

encouragement, z = -36.26, p < .001. I will illustrate two contrasts for comparing the levels of parent and 

peer encouragement at Grade 7 and comparing the rates of decline of two types of encouragement. As the 

first option, the glht function from the multcomp package can be used: 

library(multcomp) 

ctr <- glht(m27, c("constparent - constpeer = 0", "constparent:gradec - gradec:constpeer = 0")) 

summary(ctr) 

         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lme.formula(fixed = value ~ 0 + constparent + constparent:gradec +  

    constpeer + constpeer:gradec, data = long2, random = ~0 +  

    constparent + constparent:gradec + constpeer + constpeer:gradec |  

    caseid, correlation = corSymm(form = ~1 | caseid/obs), weights = varIdent(form = ~1 |  

    variable), method = "ML", na.action = "na.omit", control = lmeControl(maxIter = 500,  

    msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

 

Linear Hypotheses: 

                                            Estimate Std. Error z value Pr(>|z|)     

constparent - constpeer == 0                0.752641   0.019588   38.42   <1e-10 *** 

constparent:gradec - gradec:constpeer == 0 -0.056699   0.005553  -10.21   <1e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Adjusted p values reported -- single-step method) 

Note that the contrasts must be written based on the names of fixed effect from the summary function 

(e.g., constparent:gradec and gradec:constpeer). After adjusting for the familywise error 

rate, both contrasts were significant. The parent encouragement was significantly higher than peer 

encouragement at Grade 7, z = 38.42, p < .001. The rate of decline of parent encouragement was 

significantly stronger than peer encouragement, z = -10.21, p < .001.  

As the second option, we can create appropriate reference models and use deviance test to test target 

parameters. As the first comparison, we will compare the levels of parent and peer encouragement at 

                                                                                                                                                                           
 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit",  

 control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

23
 The constparent*gradec term means 1 + constparent + gradec + constparent:gradec, 

which includes lower-order terms  

Fixed Effect 

Random Effect 



Sunthud Pornprasertmanit  130 

 

Grade 7 such that the reference model would have        . If we create this model, the             

term in the reduced-form formula can be replaced by             (     )       . The 

reference model can be translated into the R script: 

m27a <- lme(value ~ 1 + constparent:gradec + constpeer:gradec, data = long2, 

 random = ~0 + constparent + constparent:gradec + constpeer + constpeer:gradec| caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit",  

 control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

The formula of the reference model has the intercept (1) instead of constparent and constpeer 

because the intercepts of both dependent variables are equal (   ). This model can be compared with the 

original model by the deviance test: 

anova(m27, m27a) 

     Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

m27      1 17 112866.7 113013.4 -56416.35                         

m27a     2 16 114143.7 114281.7 -57055.84 1 vs 2 1278.992  <.0001 

Similar to the multi-parameter contrast, the difference between the averages of parent and peer 

encouragement at Grade 7 was significant, 2
(1) = 1278.99, p < .001. Note that this deviance test does not 

account for the familywise error rate. 

As the second comparison, we will compare comparing the rates of decline of two types of 

encouragement such that the reference model would have        . If we create this model, the 

     (     )       (     ) term in the reduced-form formula can be replaced by      (     )  

     (     )  (     )   (     )     (     ). The reference model can be translated into the 

R script: 

m27b <- lme(value ~ 0 + gradec + constparent + constpeer, data = long2, 

 random = ~0 + constparent + constparent:gradec + constpeer + constpeer:gradec| caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit",  

 control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

The formula of the reference model has the fixed effect of grade (gradec) instead of the products of 

grade with the dummy variables (constparent:gradec and constpeer:gradec) because the 

effects of grade of both dependent variables are equal (   ). This model can be compared with the 

original model by the deviance test: 

anova(m27, m27b) 

     Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

m27      1 17 112866.7 113013.4 -56416.35                         

m27b     2 16 112965.2 113103.2 -56466.60 1 vs 2 100.5027  <.0001 
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Similar to the multi-parameter contrast, the difference between the rates of decline of parent and peer 

encouragement was significant, 2
(1) = 100.50, p < .001. Again, this deviance test does not account for 

the familywise error rate. 

Model 28: Multivariate Linear Growth Model with Time-Invariant Covariate 

The linear trajectories of both parent encouragement (parentpush) and peer encouragement 

(peerpush) across grades are predicted by gender. The gender variable needs to be in the factor 

format, which has been done during the restructuring process. The multivariate linear growth model with 

time-invariant covariate would be 
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These notations represent (the blue lines indicate that the meanings are changed from Model 27)   

      = The parent encouragement in studying math of Measurement i in Student j  

      = The peer encouragement in studying math of Measurement i in Student j  

     = The grade that the Measurement i in Student j was observed 

     = The expected parent encouragement of Student j at Grade 7 

     = The expected change in parent encouragement when grade increases by 1 for Student j, 

which is the rate of change in parent encouragement for Student j 

     = The expected peer encouragement of Student j at Grade 7 

     = The expected change in peer encouragement when grade increases by 1 for Student j, which 

is the rate of change in peer encouragement for Student j 

     = The average of parent encouragement in Grade 7 across female students 

     = The average rate of change in parent encouragement across female students 

     = The average of peer encouragement in Grade 7 across female students 

     = The average rate of change in peer encouragement across female students 

     = The gender difference in parent encouragement at Grade 7  

     = The gender difference in the rate of change in parent encouragement 

     = The gender difference in peer encouragement at Grade 7  

     = The gender difference in the rate of change in peer encouragement 

      = The difference between the actual parent encouragement score of Measurement i in 

Student j and the expected score of Student j at a given grade level 

      = The difference between the actual peer encouragement score of Measurement i in Student j 

and the expected score of Student j at a given grade level 

     = The deviation of the actual parent encourangement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students with the same gender 

     = The deviation of the rate of change in parent encourangement of Student j from the average 

rate of change across students with the same gender 
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     = The deviation of the actual peer encourangement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across students with the same gender 

     = The deviation of the rate of change in peer encourangement of Student j from the average 

rate of change across students with the same gender 

   
  = The parent encourangement score residual variance within the measurement level (L1 

residual variance) controlling for grade 

   
  = The peer encourangement score residual variance within the measurement level (L1 residual 

variance) controlling for grade 

     = The residual covariance between parent encouragement and peer encouragement within 

participants controlling for grade 

    
( )
    √  

   
 ⁄  = The covariance mentioned above in the correlation scale (from -1 to 1) 

     = The residual variance of parent encouragement scores at Grade 7 across students 

controlling for gender 

     = The residual variance of the rate of change in parent encouragement score across students 

controlling for gender 

     = The residual variance of peer encouragement scores at Grade 7 across students controlling 

for gender 

     = The residual variance of the rate of change in peer encouragement score across students 

controlling for gender 

     = The residual covariance between the parent encouragement score at Grade 7 and the rate of 

change in parent encouragement controlling for gender 

     = The residual covariance between the parent encouragement score at Grade 7 and the peer 

encouragement score at Grade 7 controlling for gender 

     = The residual covariance between the parent encouragement score at Grade 7 and the rate of 

change in peer encouragement controlling for gender 

     = The residual covariance between the rate of change in parent encouragement and the peer 

encouragement score at Grade 7 controlling for gender 

     = The residual covariance between the rate of change in parent encouragement and the rate of 

change in peer encouragement controlling for gender 

     = The residual covariance between the peer encouragement score at Grade 7 and the rate of 

change in peer encouragement controlling for gender 

        √      ⁄  (where      0, 1, 2, or 3 and    ) = The covariance mentioned above in the 

correlation scale (from -1 to 1) 

The formulas listed above with two dependent variables can be condensed into a formula with one 

dependent variable with the help of dummy variables:  

L1   ̃     (       (      ))    (       (      ))   ̃    ̃    (   ̃
  ) 

where notations are defined in Model 26. 

The model can be analyzed by the lme function from the nlme package: 

m28 <- lme(value ~ 0 + variable + variable:gradec + variable:gender + variable:gender:gradec, 
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data = long2, 

random = ~0 + variable + variable:gradec| caseid,  

 correlation = corSymm(form = ~ 1 | caseid/obs), 

 weights = varIdent(form = ~1 | variable), method = "ML", na.action = "na.omit",  

 control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

summary(m28) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long2  

       AIC      BIC    logLik 

  112856.6 113037.7 -56407.28 

 

Random effects: 

 Formula: ~0 + variable + variable:gradec | caseid 

 Structure: General positive-definite, Log-Cholesky parametrization 

                          StdDev    Corr                   

variableparentpush        0.7068118 vrblprn vrblprp vrblp: 

variablepeerpush          0.6822875  0.377                 

variableparentpush:gradec 0.1086279 -0.529  -0.274         

variablepeerpush:gradec   0.1329276 -0.188  -0.701   0.267 

Residual                  0.7594470                        

 

Correlation Structure: General 

 Formula: ~1 | caseid/obs  

 Parameter estimate(s): 

 Correlation:  

  1     

2 0.119 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | variable  

 Parameter estimates: 

parentpush   peerpush  

  1.000000   1.167889  

Fixed effects: value ~ 0 + variable + variable:gradec + variable:gender + variable:gender:gradec  

                                          Value  Std.Error    DF   t-value p-value 

variableparentpush                    2.0176147 0.02185064 35329  92.33662  0.0000 

variablepeerpush                      1.2264624 0.02363324 35329  51.89564  0.0000 

variableparentpush:gradec            -0.2260322 0.00571405 35329 -39.55727  0.0000 

variablepeerpush:gradec              -0.1590402 0.00652426 35329 -24.37673  0.0000 

variableparentpush:gendermale         0.0248452 0.03043982 35329   0.81621  0.4144 

variablepeerpush:gendermale           0.0993509 0.03287836 35329   3.02177  0.0025 

variableparentpush:gradec:gendermale  0.0082202 0.00803640 35329   1.02287  0.3064 

variablepeerpush:gradec:gendermale   -0.0118730 0.00912959 35329  -1.30050  0.1934 

 Correlation:  

                                     vrblprn vrblprp vrblntpsh:gr vrblpsh:gr vrblprpsh:gn vrblpsh:gn vrblprn:: 

variablepeerpush                      0.236                                                                            

variableparentpush:gradec            -0.768  -0.167                                                                    

variablepeerpush:gradec              -0.152  -0.829   0.168                                                            

variableparentpush:gendermale        -0.718  -0.169   0.551        0.109                                             

variablepeerpush:gendermale          -0.169  -0.719   0.120        0.596      0.236                                

variableparentpush:gradec:gendermale  0.546   0.119  -0.711       -0.120     -0.762       -0.166                 

variablepeerpush:gradec:gendermale    0.108   0.593  -0.120       -0.715     -0.151       -0.825      0.168    

 

Standardized Within-Group Residuals: 

       Min         Q1        Med         Q3        Max  

-2.7563962 -0.6234359 -0.1362312  0.5886060  3.7951317  

 

Number of Observations: 41280 

Number of Groups: 5944 

Note that the script is slightly different in this example such that the variable variable is used instead 

of the constparent and constpeer variables. This variable variable is in the factor format. If a 

factor is used in a formula without intercept (e.g., 0 + variable), the dummy variables representing 

each group are created (e.g., two dummy variables are created for a two-category factor). Thus, the code 
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is equivalent to specifying the constparent and constpeer variables separately.
24

 The mapping 

from the formula and reduced-form equation would be 

formula = value ~ 0 + variable + variable:gradec  

  + variable:gradec:gender + variable:gender:gradec 

random = ~ 0 + variable + variable:gradec | caseid 

 

formula = value ~ 0 + constparent + constparent:gradec  

  + constparent:gradec:gender + constparent:gender:gradec  

  + constpeer + constpeer:gradec  

  + constpeer:gradec:gender + constpeer:gender:gradec  

random = ~ 0 + constparent + constparent:gradec  

  + constpeer + constpeer:gradec | caseid 

                       (      )         (      ) 

                              (      )         (      ) 

                      (      )             (      )      

The gender differences on the rates of change were not significant for parent encouragement, z = 1.02, p = 

.31, and for peer encouragement, z = -1.30, p = .19. The gender difference on the initial statuses of parent 

encouragement was not significant, z = .82, p = .41. However, male students had a significantly higher 

peer encouragement than female students by 0.1 point, z = 3.02, p = .003. If the interaction was 

significant, the rockchalkMultilevel package could not be used here. The package has not support 

multivariate model yet. Users are encouraged to use the online applet or centering to probe interactions. 

Multiple Group Analysis 
If a predictor is categorical variable, we can transform the categorical variable as dummy variables and 

put it as a predictor. By this method, both L1 and L2 variances are assumed to be equal across groups. We 

have discussed this approach in Model 2. This section will discuss about an alternative method that allows 

different groups to have different residual variances at both levels.
25

 This method is similar to the trick 

used in analyzing multivariate model. Note that this approach is applicable for the categorical variable at 

the highest level (e.g., L2 for two-level MLM) only. 

Model 29: Multiple-Group Null Model 

The math achievement scores are predicted by gender. Gender can be used as a predictor directly (see 

Model 2). In this example, gender will be treated as multiple groups. L1 and L2 variances will be varied 

across groups. The multiple-group null model would be 

L1 
   {
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24

 I have tried specifying the model by the constparent and constpeer variables. The computer was out of 

memory. I believe that the lme function handles the memory more efficiently when a variable with the factor format 

is specified than when dummy variables are used. 
25

 The approach discussed in this section is analogous to multiple-group approach in SEM. The dummy variable 

approach is analogous to using a dummy variable as a covariate in SEM. 

Fixed Effect 

Random Effect 
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These notations represent  

     = The math achievement score of Measurement i in Student j  

    = The gender of Student j (1 = Male, 0 = Female) 

     = The average of math achievement scores of Student j (who is female) 

     = The average of math achievement scores of Student j (who is male) 

     = The average of math achievement scores across female students 

     = The average of math achievement scores across male students 

      = The deviation of the math achievement scores of Measurement i in Student j from the 

Student j (who is female) average  

      = The deviation of the math achievement scores of Measurement i in Student j from the 

Student j (who is male) average 

     = The deviation of the math achievement scores of Student j from the average across female 

students 

     = The deviation of the math achievement scores of Student j from the average across male 

students 

   
  = The math achievement scores variance within female students (L1 variance) 

   
  = The math achievement scores variance within male students (L1 variance) 

     = The math achievement scores variance across female students (L2 variance) 

     = The math achievement scores variance across male students (L2 variance) 

Note that the covariances across genders are not defined because they are independent cases. That is, 

      and      . 

The formulas listed above with two dependent variables can be condensed into a formula with one 

dependent variable with the help of dummy variables:  

L1       (   )    (   )           (   
  ) 

where 

         = A dummy variable where 1 represents females and 0 represents males  

       = A dummy variable where 1 represents males and 0 represents females  

     = The L1 residuals regardless of gender 

    = The variance within students regardless of gender, which the error structure is based on 

gender 

The reduced form of this formula would be 

                                

Notice that this model does not have the intercept term (no fixed effect multiplied by just 1). All 

regression coefficients are multiplied by dummy variables.  

There are several data processing steps before fitting the model. First, the target data set is loaded. The 

grade variable needs to be centered at Grade 7.  
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long <- read.csv("mathgrowth.csv", header = TRUE, na.strings="-999999") 

long$gradec <- long$grade – 7 

The dummy variables representing each gender are also needed. 

long$female <- as.numeric(long$gender == 1) 

long$male <- as.numeric(long$gender == 2) 

Because L1 residual have different variances for different genders, the lme4 package cannot be used. 

The lme function from the nlme package is used instead: 

m29 <- lme(mathach ~ 0 + female + male, data = long, 

random = list(caseid=pdBlocked(list(pdSymm(form = ~0 + female),  

pdSymm(form = ~0 + male)))),  

 weights = varIdent(form = ~1 | gender), method = "ML", na.action = "na.omit") 

summary(m29) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long  

       AIC      BIC    logLik 

  142859.1 142906.2 -71423.54 

 

Random effects: 

 Composite Structure: Blocked 

 

 Block 1: female 

 Formula: ~0 + female | caseid 

          female 

StdDev: 10.75097 

 

 Block 2: male 

 Formula: ~0 + male | caseid 

            male Residual 

StdDev: 12.92212 7.916055 

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | gender  

 Parameter estimates: 

        2         1  

1.0000000 0.8835357  

Fixed effects: mathach ~ 0 + female + male  

          Value Std.Error   DF  t-value p-value 

female 60.07720 0.2161749 5856 277.9101       0 

male   59.69612 0.2539496 5856 235.0708       0 

 Correlation:  

     female 

male 0      

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-4.99440433 -0.54381884  0.01474496  0.56246627  3.88701374  

 

Number of Observations: 19041 

Number of Groups: 5858 

The formula is similar to Model 26 such that intercepts are fixed to 0 and two dummy variables (female 

and male) are included as predictors to represent     and    . In this model, the random argument is 

quite hard to specify. Here is the target matrix of the covariances of random effects: 

[
   
    

] 
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Let’s think that the covariance matrix consists of two blocks: specification for females and males. Any 

covariances across blocks are fixed to 0 (male scores cannot be related with female scores). In the blue 

block, the random effect can be specified as pdSymm(form = ~0 + female), where pdSymm is to 

create a symmetric matrix of covariances among random components. In the red block, the random effect 

can be specified as pdSymm(form = ~0 + male). Then, these blocks are put into a list, 

list(pdSymm(form = ~0 + female), pdSymm(form = ~0 + male)). The list is put in 

the pdBlocked function to indicate that we have a blocked matrix, 

pdBlocked(list(pdSymm(form = ~0 + female), pdSymm(form = ~0 + male))). 

Because we need specify the variable that we use to represent L2 units, the list with a name of L2 ID 

variable (caseid) is used to crop the blocked matrix.  

The correlation argument is not specified here because there is no correlation between scores from 

males and females (since there are from separate persons),      .  The weights argument is 

specified such that the L1 residual variances depend on gender, varIdent(form = ~1 | 

gender). The mapping from the formula and reduced-form equation would be 

formula = value ~ 0 + female + male  

random = list(caseid = pdBlocked(list( 

  pdSymm(form = ~0 + female),  

  pdSymm(form = ~0 + male) 

     ))) 

                                
      

      

 Fixed Effect        +          Random Effect 

Readers can see that the L2 standard deviations of math achievements across female and male students 

are 10.75 and 12.92, respectively. The L1 standard deviations of math achievement for female and male 

groups are 6.99 (         ) and 7.92, respectively. From this output, researchers may wish to analyze 

residual intraclass correlations (accounting for gender): 

1. Extract the variances of random effects and residual variance by the VarCorr function: 

allvar <- VarCorr(m29) 

allvar 

caseid = pdSymm(0 + female), pdSymm(0 + male)  

         Variance  StdDev    

female   115.58343 10.750974 

male     166.98114 12.922118 

Residual  62.66393  7.916055 

2. Get the L1 residual standard deviation. 

malesd <- as.numeric(allvar[3, 2]) 

The as.numeric function is needed to transform the text format to the number format. This 

residual standard deviation is among male participants. If you see the output from 

summary(m29), the residual variance is listed under Block 2: male. 

3. Compute the L1 residual standard deviation of all groups: 

l1sd <- c(malesd * coef(m29$modelStruct$varStruct, unconstrained = FALSE), malesd) 
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The code used to find the ratio of standard deviations between the first and the rest of dependent 

variables are similar to the codes in Model 19. I put the malesd as the last element according to 

the order of random effects from the result of the VarCorr function (female and male). 

4. Compute the L1 residual variances of all variables: 

l1var <- l1sd^2 

5. Get the variances at L2 of all variables (the order will be female and male): 

l2var <- as.numeric(allvar[1:2, 1]) 

6. Compute residual intraclass correlations of all groups: 

icc <- l2var / (l1var + l2var) 

icc 

        1            

0.7026301 0.7271271 

The residual intraclass correlations of math achievement for females and males are .70 and .73, 

respectively. 

Furthermore, we can compare whether the averages of math achievement between female and male 

students are different. The comparison can be done by the glht function in the multcomp package: 

library(multcomp) 

ctr <- glht(m29, "female - male = 0") 

summary(ctr) 

         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lme.formula(fixed = mathach ~ 0 + female + male, data = long,  

    random = list(caseid = pdBlocked(list(pdSymm(form = ~0 +  

        female), pdSymm(form = ~0 + male)))), weights = varIdent(form = ~1 |  

        gender), method = "ML", na.action = "na.omit") 

 

Linear Hypotheses: 

                   Estimate Std. Error z value Pr(>|z|) 

female - male == 0   0.3811     0.3335   1.143    0.253 

(Adjusted p values reported -- single-step method) 

On average, male and female students were not significantly different in math achievement, z = 1.14, p = 

.25. Readers are encouraged to run the model where gender is used as a predictor (similar to Model 2). 

Readers may compare the results of gender differences, residual variances at both levels, and residual 

intraclass correlations between the current model and the model with gender as a predictor. 

Model 30: Multiple-Group Model of Linear Trajectories 

The linear trajectory of math achievement is predicted by gender. This model is similar to Model 17. 

However, we will use the multiple-group framework to analyze this data. The multiple-group model of 

linear trajectories would be 

L1 
   {
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L2             
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]  
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         ]

 
 
 

)

  

These notations represent (the blue lines indicate that the meanings changed from Model 29)   

     = The math achievement score of Measurement i in Student j  

    = The gender of Student j (1 = Male, 0 = Female) 

     = The grade that the Measurement i in Student j was observed 

     = The expected math achievement scores of Student j (who is female) at Grade 7 

     = The expected change in math achievement when grade increases by 1 for Student j (who is 

female), which is the rate of change in math achievement for female Student j 

     = The expected math achievement scores of Student j (who is male) at Grade 7 

     = The expected change in math achievement when grade increases by 1 for Student j (who is 

male), which is the rate of change in math achievement for male Student j 

     = The average of math achievement in Grade 7 across female students 

     = The average rate of change in math achievement across female students 

     = The average of math achievement in Grade 7 across male students 

     = The average rate of change in math achievement across male students 

      = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j (who is female) at a given grade level 

      = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j (who is male) at a given grade level 

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across female students 

     = The deviation of the rate of change in math achievement of Student j from the average rate 

of change across female students  

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

average math achievement score at Grade 7 across male students 

     = The deviation of the rate of change in math achievement of Student j from the average rate 

of change across male students  

   
  = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade for females 

   
  = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade for males 

     = The variance of math achievement scores at Grade 7 across female students  

     = The variance of the rate of change in math achievement score across female students 

     = The variance of math achievement scores at Grade 7 across male students  

     = The variance of the rate of change in math achievement score across male students 

     = The covariance between the math achievement score at Grade 7 and the rate of change in 

math achievement score for females 
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     = The covariance between the math achievement score at Grade 7 and the rate of change in 

math achievement score for males 

        √      ⁄  (where      0, 1, 2, or 3 and    ) = The covariance mentioned above in the 

correlation scale (from -1 to 1) 

The formulas listed above with two dependent variables can be condensed into a formula with one 

dependent variable with the help of dummy variables:  

L1   ̃     (       (      ))    (       (      ))   ̃    ̃    (   ̃
  ) 

where the notations were defined in Model 29.  

The model can be analyzed by the lme function from the nlme package: 

m30 <- lme(mathach ~ 0 + female + female:gradec + male + male:gradec, data = long, 

random=list(caseid=pdBlocked(list(pdSymm(form = ~0 + female + female:gradec),  

pdSymm(form = ~0 + male + male:gradec)))),  

 weights = varIdent(form = ~1 | gender), method = "ML", na.action = "na.omit",  

control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

summary(m30) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long  

       AIC      BIC    logLik 

  130484.7 130578.9 -65230.34 

 

Random effects: 

 Composite Structure: Blocked 

 

 Block 1: female, female:gradec 

 Formula: ~0 + female + female:gradec | caseid 

 Structure: General positive-definite 

              StdDev   Corr   

female        8.825821 female 

female:gradec 1.450298 0.276  

 

 Block 2: male, male:gradec 

 Formula: ~0 + male + male:gradec | caseid 

 Structure: General positive-definite 

            StdDev    Corr  

male        10.089393 male  

male:gradec  1.623012 0.363 

Residual     4.946354       

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | gender  

 Parameter estimates: 

        2         1  

1.0000000 0.8279436  

Fixed effects: mathach ~ 0 + female + female:gradec + male + male:gradec  

                 Value  Std.Error    DF   t-value p-value 

female        51.32906 0.19871755  5856 258.30161       0 

male          50.30066 0.22367698  5856 224.88081       0 

female:gradec  3.22685 0.04606491 13182  70.05015       0 

gradec:male    3.55499 0.05320433 13182  66.81774       0 

 Correlation:  

              female male   fml:gr 

male           0.000               

female:gradec -0.262  0.000        

gradec:male    0.000 -0.233  0.000 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  
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-5.47211081 -0.47768057  0.01952874  0.50429261  3.84441936  

 

Number of Observations: 19041 

Number of Groups: 5858 

The script is similar to Model 29.
 
The differences are in the formula and the random arguments. The 

gradec variable is added to those formulas by the female:gradec and male:gradec terms, 

corresponding to       and      . The : operator is to create interaction. The * operator cannot be used 

here because the lower-order terms must not be included.  

Again, the random argument is quite hard to specify. Here is the target matrix of the covariances of 

random effects: 

[
 
 
 
   
      
     
         ]

 
 
 

 

Let’s think that the covariance matrix consists of two blocks: specifications for females and males, which 

is similar to Model 29. In the blue block, the random effect is specified as pdSymm(form = ~0 + 

female + female:gradec), which is translated to the variance of female (   ), the variance of 

female:gradec (   ), and covariance between female and female:gradec (   ). In the red 

block, the random effect is specified as pdSymm(form = ~0 + male + male:gradec). These 

blocks are combined with a similar method to Model 29. 

The control argument is specified here because the default number of iterations is not enough to get a 

convergent result. Please see the details in the help page of the lmeControl function (type 

?lmeControl). 

The mapping from the formula and reduced-form equation would be 

formula = value ~ 0 + female + female:gradec  

  + male + male:gradec  

random = list(caseid = pdBlocked(list( 

  pdSymm(form = ~0 + female + female: gradec),  

  pdSymm(form = ~0 + male + male: gradec) 

     ))) 

               (      )             (      ) 

                      (      )             (      )      

The average rates of change in math achievement were significant for males, z = 70.05, p < .001, and 

females, z = 66.82, p < .001.  

The initial status and the rate of growth can be compared across gender. The glht function from the 

multcomp package can be used: 

library(multcomp) 

ctr <- glht(m30, c("female - male = 0", "female:gradec - gradec:male = 0")) 

summary(ctr) 

Fixed Effect 

Random Effect 
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         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lme.formula(fixed = mathach ~ 0 + female + female:gradec + male +  

    male:gradec, data = long, random = list(caseid = pdBlocked(list(pdSymm(form = ~0 +  

    female + female:gradec), pdSymm(form = ~0 + male + male:gradec)))),  

    weights = varIdent(form = ~1 | gender), method = "ML", na.action = "na.omit",  

    control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100,  

        msMaxEval = 400)) 

 

Linear Hypotheses: 

                                 Estimate Std. Error z value Pr(>|z|)     

female - male == 0                1.02840    0.29917   3.438  0.00117 **  

female:gradec - gradec:male == 0 -0.32814    0.07037  -4.663 6.23e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

(Adjusted p values reported -- single-step method) 

Female students had a significant higher initial status than male students, z = 3.44, p = .001, but female 

students had a significant lower rate of growth than male students, z = -4.66, p < .001. In the output of this 

model, the initial statuses and the rates of change of each gender were already provided so probing 

interaction is not needed. Readers are encouraged to compare the result of this model with the result from 

Model 17. 

Model 31: Multiple-Group Model of Linear Trajectories with Time-Invariant 

Covariate 

The linear trajectory of math achievement is predicted by gender, which we will analyze by multiple-

group framework in this section (similar to Model 30). In this example, attitude toward math, which is 

student-level predictor, is included in the model. Attitude toward math (with grand-mean centering) is 

used to predict both initial status and rate of change of math achievement. The multiple-group model of 

linear trajectories with time-invariance covariates would be 
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These notations represent (the blue lines indicate that the meanings changed from Model 30)   

     = The math achievement score of Measurement i in Student j  

    = The gender of Student j (1 = Male, 0 = Female) 

    = The attitude toward math of Student j  

     = The grade that the Measurement i in Student j was observed 

     = The expected math achievement scores of Student j (who is female) at Grade 7 

     = The expected change in math achievement when grade increases by 1 for Student j (who is 

female), which is the rate of change in math achievement for female Student j 

     = The expected math achievement scores of Student j (who is male) at Grade 7 

     = The expected change in math achievement when grade increases by 1 for Student j (who is 

male), which is the rate of change in math achievement for male Student j 

     = The average of math achievement in Grade 7 across female students given that the attitude 

toward math is equal to its grand mean 
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     = The change in the average of math achievement in Grade 7 for female students if the 

attitude toward math increases by 1 

     = The average rate of change in math achievement across female students given that the 

attitude toward math is equal to its grand mean 

     = The change in the average rate of change in math achievement for female students if the 

attitude toward math increases by 1 

     = The average of math achievement in Grade 7 across male students given that the attitude 

toward math is equal to its grand mean 

     = The change in the average of math achievement in Grade 7 for male students if the attitude 

toward math increases by 1 

     = The average rate of change in math achievement across male students given that the attitude 

toward math is equal to its grand mean 

     = The change in the average rate of change in math achievement for male students if the 

attitude toward math increases by 1 

      = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j (who is female) at a given grade level 

      = The difference between the actual math achievement score of Measurement i in Student j 

and the expected score of Student j (who is male) at a given grade level 

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

expected math achievement score at Grade 7 across female students (given the attitude toward 

math) 

     = The deviation of the rate of change in math achievement of Student j from the expected rate 

of change across female students (given the attitude toward math) 

     = The deviation of the actual math achievement score of Student j at Grade 7 from the 

expected math achievement score at Grade 7 across male students (given the attitude toward 

math) 

     = The deviation of the rate of change in math achievement of Student j from the expected rate 

of change across male students (given the attitude toward math) 

   
  = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade for females 

   
  = The math achievement score residual variance within the measurement level (L1 residual 

variance) controlling for grade for males 

     = The residual variance of math achievement scores at Grade 7 across female students 

controlling for attitude toward math 

     = The residual variance of the rate of change in math achievement score across female 

students controlling for attitude toward math 

     = The residual variance of math achievement scores at Grade 7 across male students 

controlling for attitude toward math 

     = The residual variance of the rate of change in math achievement score across male students 

controlling for attitude toward math 

     = The residual covariance between the math achievement score at Grade 7 and the rate of 

change in math achievement score in females controlling for attitude toward math 
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     = The residual covariance between the math achievement score at Grade 7 and the rate of 

change in math achievement score in males controlling for attitude toward math 

        √      ⁄  (where      0, 1, 2, or 3 and    ) = The covariance mentioned above in the 

correlation scale (from -1 to 1) 

The formulas listed above with two dependent variables can be condensed into a formula with one 

dependent variable with the help of dummy variables:  

L1   ̃     (       (      ))    (       (      ))   ̃    ̃    (   ̃
  ) 

where the notations were defined in Model 29.  

The model can be analyzed by the lme function from the nlme package: 

m31 <- lme(mathach ~ 0 + female + female:gradec + female:likemathC + female:gradec:likemathC  

+ male + male:gradec + male:likemathC + male:gradec:likemathC, data = long, 

random=list(caseid=pdBlocked(list(pdSymm(form = ~0 + female + female:gradec),  

pdSymm(form = ~0 + male + male:gradec)))),  

 weights = varIdent(form = ~1 | gender), method = "ML", na.action = "na.omit",  

control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100, msMaxEval = 400)) 

summary(m31) 

Linear mixed-effects model fit by maximum likelihood 

 Data: long  

       AIC      BIC    logLik 

  130245.8 130371.4 -65106.89 

 

Random effects: 

 Composite Structure: Blocked 

 

 Block 1: female, female:gradec 

 Formula: ~0 + female + female:gradec | caseid 

 Structure: General positive-definite 

              StdDev   Corr   

female        8.761090 female 

female:gradec 1.431502 0.262  

 

 Block 2: male, male:gradec 

 Formula: ~0 + male + male:gradec | caseid 

 Structure: General positive-definite 

            StdDev    Corr  

male        10.008505 male  

male:gradec  1.593101 0.347 

Residual     4.948018       

 

Variance function: 

 Structure: Different standard deviations per stratum 

 Formula: ~1 | gender  

 Parameter estimates: 

       2        1  

1.000000 0.828015  

Fixed effects: mathach ~ 0 + female + female:gradec + female:likemathC + female:gradec:likemathC +      male + 

male:gradec + male:likemathC + male:gradec:likemathC  

                           Value  Std.Error    DF   t-value p-value 

female                  51.40761 0.19809139  5843 259.51461       0 

male                    50.22549 0.22351079  5843 224.71171       0 

female:gradec            3.24632 0.04591228 13179  70.70696       0 

female:likemathC         0.85452 0.15529674  5843   5.50248       0 

gradec:male              3.53531 0.05311606 13179  66.55819       0 

likemathC:male           1.01004 0.19166397  5843   5.26984       0 

female:gradec:likemathC  0.15914 0.03596786 13179   4.42460       0 

gradec:likemathC:male    0.25277 0.04620519 13179   5.47069       0 

 Correlation:  
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                        female male   fml:gr fml:lC grdc:m lkmtC: fml::C 

male                     0.000                                           

female:gradec           -0.272  0.000                                    

female:likemathC         0.049  0.000 -0.001                             

gradec:male              0.000 -0.248  0.000  0.000                      

likemathC:male           0.000 -0.087  0.000  0.000  0.034               

female:gradec:likemathC -0.001  0.000  0.057 -0.286  0.000  0.000        

gradec:likemathC:male    0.000  0.033  0.000  0.000 -0.100 -0.273  0.000 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-5.46984210 -0.47714938  0.01898742  0.50460806  3.84992045  

 

Number of Observations: 19029 

Number of Groups: 5847 

The script is similar to Model 30.
 
The only difference is in the formula argument such that 

likemathC is added in the model. The female:gradec:likemathC and 

male:gradec:likemathC terms represent the interaction effects (rate of growth predicted by 

attitude toward math) and the female:gradec and male:gradec terms represent the direct effect to 

math achievement of each group (initial status predicted by attitude toward math). The random argument 

remains the same as one in Model 30 because the likemathC variable is the student-level predictor.  

The mapping from the formula and reduced-form equation would be 

formula = value ~ 0 + female + female:gradec + female:likemathC  

  + female:gradec:likemathC  

  + male + male:gradec + male:likemathC  

  + male:gradec:likemathC  

random = list(caseid = pdBlocked(list( 

  pdSymm(form = ~0 + female + female: gradec),  

  pdSymm(form = ~0 + male + male: gradec) 

     ))) 

               (      )       (    ̅)       (      )(    ̅) 

                      (      )       (    ̅)       (      )(    ̅) 

                      (      )             (      )      

The attitude toward math significantly moderated the change in math achievement across grades in both 

females, z = 4.42, p < .001, and males, z = 5.47, p < .001. The rate of increases in math achievement was 

higher when the attitude toward math increased. The difference in this moderation effect (i.e., three-way 

interaction between gender, grade, and attitude toward math) can be tested by the multi-parameter 

contrast: 

library(multcomp) 

ctr <- glht(m31, "female:gradec:likemathC - gradec:likemathC:male = 0") 

summary(ctr) 

         Simultaneous Tests for General Linear Hypotheses 

 

Fit: lme.formula(fixed = mathach ~ 0 + female + female:gradec + female:likemathC +  

    female:gradec:likemathC + male + male:gradec + male:likemathC +  

    male:gradec:likemathC, data = long, random = list(caseid = pdBlocked(list(pdSymm(form = ~0 +  

    female + female:gradec), pdSymm(form = ~0 + male + male:gradec)))),  

    weights = varIdent(form = ~1 | gender), method = "ML", na.action = "na.omit",  

    control = lmeControl(maxIter = 500, msMaxIter = 500, niterEM = 100,  

        msMaxEval = 400)) 

 

Linear Hypotheses: 

                                                     Estimate Std. Error z value Pr(>|z|) 

female:gradec:likemathC - gradec:likemathC:male == 0 -0.09363    0.05854  -1.599     0.11 

Fixed Effect 

Random Effect 
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(Adjusted p values reported -- single-step method) 

The difference between the moderation effect of attitude toward math across genders was not significant, 

z = -1.60, p = .11.  

Provide Feedback 
This article is used for lab sections in the Multilevel Modeling class, University of Kansas. If you find 

any errors or give suggestions, please let me know at 

Sunthud Pornprasertmanit 

Department of Psychology and Center for Research Methods and Data Analysis 

University of Kansas 

Email: psunthud@ku.edu  
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